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Chapter 1. SQL Server Setup
and Configuration

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be Chapter 1 of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

Database servers never live in a vacuum. They belong to an ecosystem of
one or more applications used by customers. Application databases are
hosted on one or more instances of SQL Server, which, in turn, run on
physical or virtual hardware. The data is stored on disks that are usually
shared with other customers and database systems. Finally, all components
use a network for communication and storage.

The complexity and internal dependencies of database ecosystems make
troubleshooting a very challenging task. From the customers’ standpoint,
most problems present themselves as general performance issues:
applications might feel slow and unresponsive, database queries might time
out, or applications might not connect to the database. The root cause of the
issues could be anywhere. Hardware could be malfunctioning or incorrectly
configured; the database might have inefficient schema, indexing, or code;
SQL Server could be overloaded; client applications could have bugs or
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design issues. This means you’ll need to take a holistic view of your entire
system in order to identify and fix problems.

This book is about troubleshooting SQL Server issues. However, we will
always start this by analyzing your application ecosystem and SQL Server
environment. This chapter will give you a set of guidelines on how to
perform that validation and detect most common inefficiencies in SQL
Server configuration. First, I’ll discuss the hardware and operating system
setup. Next, I’ll talk about SQL Server and database configuration. I’ll also
touch on the topic of SQL Server consolidation and the overhead that
monitoring can introduce into the system.

Hardware and Operating System
Considerations
In most cases, troubleshooting and performance-tuning processes happen in
production systems that host a lot of data and work under heavy loads. You
have to deal with the issues and tune the live systems. Nevertheless, it is
impossible to completely avoid discussion about hardware provisioning,
especially because you may find that your servers cannot keep up with the
load and need to be upgraded after troubleshooting.

I am not going to recommend particular vendors, parts or model numbers;
computer hardware improves quickly and any such specific advice would
be obsolete by the time the book is published. Instead, I’ll focus on
common-sense considerations with long-term relevance.

CPU
The license cost of a commercial database engine is, by far, the most
expensive part in the system, and SQL Server is not an exception: you
could build a decent server for less than the retail price of four cores in
Enterprise Edition. You should buy the most powerful CPU your budget
allows, especially if you are using non-Enterprise Editions, which limit the
number of cores you can utilize.
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Pay attention to CPU model. Each generation of CPUs will introduce
performance improvements over the previous ones. You may get 10% to
15% performance improvements just by choosing newer CPUs, even when
both generation of CPUs have the same clock speed.

In some cases, when licensing cost is not an issue, you may need to choose
between slower CPUs with more cores and faster CPUs with fewer cores. In
that case, the choice greatly depends on the system workload. In general,
Online Transactional Processing (OLTP) systems, and especially In-
Memory OLTP, would benefit from the higher single-core performance. A
data warehouse and analytical workload, on the other hand, may run better
with higher degree of parallelism and more cores.

Memory
There is a joke in the SQL Server community that goes like this:

Q. How much memory does SQL Server usually need?

A. More.

This joke has merits. SQL Server benefits from a large amount of memory,
which allows it to cache more data. This, in turn, will reduce amount of disk
input/output (I/O) activity and improve SQL Server’s performance.
Therefore, adding more memory to the server may be the cheapest and
fastest way to address some performance issues.

For example, suppose the system suffers from non-optimized queries. You
could reduce their impact by adding memory and eliminating the physical
reads they introduce. This, obviously, does not solve the root cause of the
problem. It is also dangerous, because as the data grows it eventually may
not fit into the cache. However, in some cases it may be acceptable as a
temporary Band-Aid solution.

The Enterprise Edition of SQL Server does not limit the amount of memory
it can utilize. Non-Enterprise editions have limitations. In terms of memory
utilization, Standard Edition of SQL Server 2016 and above can use up to
128GB of RAM for the buffer pool, 32GB of RAM per database for In-
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Memory OLTP data, and 32GB of RAM for storing columnstore index
segments. Web Edition memory usage is limited to half of what the
Standard Edition provides. Factor those limits into your analysis when you
are provisioning or upgrading non-Enterprise Edition instances of SQL
Server. Don’t forget to allocate some additional memory to other SQL
Server components, for example plan cache and lock manager.

In the end, add as much memory as you can afford. It is cheap nowadays.
There is no need to overallocate memory if your databases are small, but
think about future data growth.

Disk Subsystem
A healthy, fast disk subsystem is essential for good SQL Server
performance. SQL Server is very I/O intensive application - it is constantly
reading from and writing data to disk.

There are many options for architecting the disk subsystem for SQL Server
installations. The key is to build it in a way that provides low latency for
I/O requests. For critical tier-1 systems, I recommend not exceeding 3 to 5
milliseconds (ms) of latency for data files reads and writes, and 1ms to 2ms
of latency for transaction log writes. Fortunately, those numbers are now
easily achieved with flash-based storage.

There’s a catch, though: When you troubleshoot I/O performance in SQL
Server, you need to analyze the latency metrics within SQL Server rather
than on the storage level. It is common to see significantly higher numbers
in SQL Server rather than in storage key performance indicators (KPIs),
due to the queueing that may occur with I/O intensive workload. (Chapter 3
will discuss how to capture and analyze I/O performance data.)

If your storage subsystem provides multiple performance tiers, I
recommend putting tempdb database on the fastest drive, followed by
transaction log and data files. The tempdb is the shared resource on the
server, and it is essential for this database to have good I/O throughput.
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The writes to transaction log files are synchronous. It is critical to have low
write latency for those files. The writes to transaction log are also
sequential; however, remember that placing multiple log and/or data files to
the same drive will lead to random I/O across multiple databases.

As a best practice, I‘d put data and log files to the different physical drives
for maintainability and recoverability reasons. You need to look at the
underlying storage configuration though. In some cases, when disk arrays
do not have enough spindles, splitting them across multiple LUNs may
degrade disk array performance.

In my systems, I do not split clustered and nonclustered indexes across
multiple filegroups by placing them on different drives. It rarely improves
I/O performance unless you can completely separate storage path across the
filegroups. On the other hand, this configuration can significantly
complicate disaster recovery.

Finally, remember that some SQL Server technologies benefit from good
sequential I/O performance. For example, In-Memory OLTP does not use
random I/O at all, and performance of sequential reads usually becomes the
limiting factor for database startup and recovery. Data warehouse scans
would also benefit from sequential I/O performance when B-Tree and
columnstore indexes are not heavily fragmented. The difference between
sequential and random I/O performance is not very significant with flash-
based storage; however, it may be a big factor with magnetic drives.

Network
SQL Server communicates with clients and other servers via the network.
Obviously, it needs to provide enough bandwidth to support that
communication. There are a couple items I want to mention, though.

First, you need to analyze entire network topology when you troubleshoot
network-related performance. Remember that a network’s throughput will
be limited to the speed of its slowest component. You may have a 10 Gbps
uplink from the server; however, if you have 1Gbps switch in network path,
that would become the limiting factor. This is especially critical for
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network-based storage: make sure that I/O path to disks is as efficient as
possible.

Second, there is the common practice to build separate network for cluster
heartbeat in AlwaysOn Failover Cluster and AlwaysOn Availability
Groups. In some cases, people may also consider building separate network
for all Availability Group traffic. This is the good approach that improves
cluster reliability in simple configurations when all cluster nodes belong to
the same subnet and may utilize Layer-2 routing. However, in complex,
multi-subnet setup, multiple networks may lead to the routing issues. Be
careful with that setup and make sure that networks are properly utilized in
cross-node communication.

Virtualization adds another layer of complexity here. C

onsider a situation where you have a virtualized SQL Server cluster with
nodes running on different hosts. You would need to check that the hosts
can separate and route the traffic in the cluster network separately from the
client traffic. Serving all vLan traffic through the single physical network
card would defeat the purpose of a heartbeat network. (I will talk more
about troubleshooting network-related issues in Chapter 13.)

Operating Systems and Applications
As a general rule, I suggest using the most recent version of your operating
system that supports your version of SQL Server. Make sure that both the
OS and SQL Server are patched, and implement a process to do patching
regularly.

If you are using old version of SQL Server prior 2016, use 64-bit variant. In
the most cases, the 64-bit version outperforms 32-bit version and scales
better with the hardware.

Since SQL Server 2017, it’s been possible to use Linux to host the database
server. From a performance standpoint, Windows and Linux versions of
SQL Server are very similar. The choice of operating system depends on
enterprise ecosystem and on what your team is more comfortable to
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support. Keep in mind, that Linux-based deployments may require a
slightly different High Availability (HA) strategy compared to a Windows
setup. For example, you may have to rely on Pacemaker instead of
Windows Server Failover Cluster (WSFC) for automatic failovers.

Use a dedicated SQL Server host whenever possible. Remember that it’s
easier and cheaper to scale application servers—don’t waste valuable
resources on the database host!

On the same note, do not run nonessential processes on the server. I see
database engineers running SQL Server Management Studio (SSMS) in
remote desktop sessions all the time. It is always better to work remotely
and not consume server resources.

Finally, if you are required to run antivirus software on the server, exclude
any database folders from the scan.

Virtualization and Clouds
Modern IT infrastructure depends heavily on virtualization, which provides
additional flexibility, simplifies management, and reduces hardware costs.
As a result, more often than not, you’ll have to work with virtualized SQL
Server infrastructure.

There is nothing wrong with that. Properly implemented virtualization gives
you many benefits, with negligible performance overhead. It adds another
layer of High Availability with VMware vSphere vMotion or Hyper-V Live
Migration. It allows you to seamlessly upgrade the hardware and simplifies
database management. Unless you have the edge case when you need to
squeeze the most from the hardware, I suggest virtualizing your SQL Server
ecosystem.

NOTE
The overhead from virtualization increases on the large servers with many CPUs.
However, it still may be acceptable in many cases.
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Virtualization, however, adds another layer of complexity during
troubleshooting. You need to pay attention to the host’s health and load in
addition to guest virtual machine (VM) metrics. To make matters worse, the
performance impact of an overloaded host might not be clearly visible in
standard performance metrics in guest OS.

I will discuss several approaches to troubleshooting the virtualization layer
in Chapter 15 however, you can start by working with infrastructure
engineers to confirm that the host is not overprovisioned. Pay attention to
the number of physical CPUs and allocated vCPUs on the host along with
physical and allocated memory. Mission-critical SQL Server VMs should
have resources reserved for them to avoid performance impact.

Asides from the virtualization layer, troubleshooting virtualized SQL Server
instances is the same as troubleshooting physical ones. The same applies to
cloud installations when SQL Server is running within virtual machines.
After all, the cloud is just a different datacenter managed by an external
provider.

Configuring Your SQL Server
The SQL Server setup process’s default configuration is relatively decent
and may be suited to light and even moderate workloads. There are several
things you need to validate and tune, however.

SQL Server Version and Patching Level
SELECT @@VERSION is the first statement I run during SQL Server
system health checks. There are two reasons for that. First, it gives me a
glimpse of the system’s patching strategy, so I can potentially suggest some
improvements. Second, it helps me to identify possible known issues that
may exist in the system.

The latter one is very important. Many times, customers have asked me to
troubleshoot problems that had already been resolved by service packs and
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cumulative updates. Always look at the release notes to see if any of the
issues mentioned look familiar; your problem may have already been fixed.

You might consider upgrading to the newest version of SQL Server when
possible. Each version introduces performance, functional and scalability
enhancements. This is especially true if you move to SQL Server 2016 or
above from older versions. SQL Server 2016 was a milestone release that
included many performance enhancements. In my personal experience,
upgrading from SQL Server 2012 to 2016 and above can improve
performance by 20 to 40% without any additional steps.

It is also worth noting that starting with SQL Server 2016 SP1, many
former Enterprise Edition-only features became available in the lower-end
editions of the product. Some of them, like data compression, allow SQL
Server to cache more data in the buffer pool and improve performance of
the system.

Obviously, you need to test the system prior to upgrading – there is always
the chance of regressions. The risk is usually small with minor patching;
however, it increases with the major upgrades. You can mitigate some risks
with several database options, as you will see later in this chapter.

Instant File Initialization
Every time SQL Server grows data and transaction log files—either
automatically or as part of ALTER DATABASE command—it fills the
newly allocated part of the file with zeros. This process blocks all sessions
that are trying to write to the corresponding file and, in case of transaction
log, stops generating any log records. It may also generate the spike in I/O
write workload.

That behavior cannot be changed for transaction log files – SQL Server
always zeros them out. However, you can disable it for the data files by
enabling instant file initialization (IFI). This speeds up data file growth and
reduces the time required to create or restore databases.
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You can enable instant file initialization by giving an
SA_MANAGE_VOLUME_NAME permission, also known as Perform
Volume Maintenance Task, to the SQL Server startup account. This can be
done in the Local Security Policy management application (secpol.msc).
You will need to restart SQL Server for the change to take effect.

In SQL Server 2016 and above, you can also grant this permission as part of
the SQL Server setup process (shown in Figure 1-1).
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Figure 1-1. Enabling Instant File Initialization during SQL Server setup.

You can check if IFI is enabled by examining the
instant_file_initialization_enabled column in the sys.dm_server_services
data management view. This column is available in SQL Server 2012 SP4,
SQL Server 2016 SP1, and above. In older versions, you can run the code
shown in Listing 1-1.

Example 1-1. Checking if instant file initialization is enabled in old SQL
Server versions
DBCC TRACEON(3004,3605,-1); 
go 
CREATE DATABASE Dummy; 
go 
EXEC sp_readerrorlog 0,1,N’Dummy’; 
go 
DROP DATABASE Dummy; 
go 
DBCC TRACEOFF(3004,3605,-1); 
go

If IFI is not enabled, the SQL Server log will indicate that SQL Server is
zeroing out the mdf data file in addition to zeroing out the log ldf file, as
shown in Figure 1-2. When IFI is enabled, it will only show zeroing out of
the log ldf file.
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Figure 1-2. Checking if instant file initialization is enabled.

There is a small security risk associated with this setting. When IFI is
enabled, the database administrators may see some data from previously
deleted files in OS by looking at newly allocated data pages in the database.
This is acceptable in most systems; if so, enable it.

Tempdb Configuration
Tempdb is the system database used to store temporary objects created by
users and by SQL Server internally. This is a very active database and it
often becomes a source of contention in the system. I will discuss how to
troubleshoot tempdb-related issues in Chapter 9; in this chapter, I’ll focus
on configuration.

As already mentioned, you need to place tempdb on the fastest drive in the
system. Generally speaking, this drive does not need to be redundant nor
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persistent – the database is recreated at SQL Server startup, and local SSD
disk or cloud ephemeral storage would work fine. Remember, however, that
SQL Server will go down if tempdb is unavailable, so factor that into your
design.

If you are using non-Enterprise Editions of SQL Server and the server has
more memory than SQL Server can consume, you can put tempdb on the
RAM drive. Don’t do that with Enterprise Edition, though – you’ll usually
achieve better performance by using that memory for the buffer pool.

NOTE
Pre-allocate tempdb files to the maximum size of RAM drive and create additional
small data and log files on disk to avoid running out of space. SQL Server will not use
small on-disk files until RAM drive files are full.

The tempdb database should always have multiple data files. Unfortunately,
default configuration created by SQL Server setup is not optimal, especially
in the old versions of the product. We will discuss how to fine-tune the
number of data files in tempdb later in the book, but you can use the
following as the rule of thumb in initial configuration:

If the server has 8 or fewer CPU cores, create the same number of
data files.

If the server has more than 8 CPU cores, use either 8 data files or
1/4 of the number of cores, whichever is greater, rounding up in
batches of 4 files. For example, use 8 data files in the 24-core
server and 12 data files in the 40-core server.

Finally, make sure that all tempdb data files have the same initial size and
auto-growth parameters specified in megabytes (MB) rather than in
percentages. This will allow SQL Server to better balance the usage of the
data files, reducing possible contention in the system.

Trace Flags
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SQL Server uses trace flags to enable or change the behavior of some
product features. Although Microsoft has introduced more and more
database and server configuration options in new versions of SQL Server,
trace flags are still widely used. You will need to check any trace flags that
are present in the system; you may also need to enable some of them.

You can get the list of enabled trace flags by running the DBCC
TRACESTATUS command. You can enable them in SQL Server
Configuration Manager and/or by using -T SQL Server startup option.

Let’s look at some common trace flags.

T1118

This trace flag prevents usage of mixed extents in SQL Server. This will
help to improve tempdb throughput in SQL Server 2014 and below by
reducing the amount of changes and, therefore, contention in tempdb
system catalogs. This trace flag is not required in SQL Server 2016 and
above, where tempdb does not use mixed extents by default.

T1117

With this trace flag, SQL Server auto-grows all data files in the
filegroup when one of the files is out of space. It provides more
balanced I/O distribution across data files. You should enable it to
improve tempdb throughput in old versions of SQL Server; however,
check if any users’ databases have filegroups with multiple unevenly
sized data files. As with T1118, this trace flag is not required in SQL
Server 2016 and above, where tempdb auto-grows all data files by
default.

T2371
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By default, SQL Server automatically updates statistics only after 20%
of the data in the index has been changed. This means that with large
tables, statistics are rarely updated automatically. The trace flag T2371
changes this behavior, making the statistics update threshold dynamic –
the larger the table is, the lower the percentage of changes required to
trigger the update. Starting with SQL Server 2016, you can also control
this behavior via database compatibility level. I recommend enabling
this trace flag unless all databases on the server have a compatibility
level of 130 or above.

T3226

With this trace flag, SQL Server does not write information about
successful database backups to the error log. This may help to reduce
the size of the logs, making them more manageable.

T1222

This trace flag writes deadlock graphs to the SQL Server error log. This
flag is benign; however, it makes SQL Server log harder to read and
parse. It is also redundant – you can get deadlock graph from
System_Health Extended Event session when needed. I usually remove
this trace flag when I see it.

T4199

This trace flag and the QUERY_OPTIMIZER_HOTFIXES database
option (in SQL Server 2016 and above) control the behavior of Query
Optimizer hotfixes. When enabled, the hotfixes introduced in service
packs and cumulative updates will be used. This may help to address
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some of Query Optimizer bugs and improve query performance;
however, it also increases the chance of plan regressions after patching.
I usually do not enable it in production systems unless it is possible to
perform thorough regression testing of the system before patching.

T7412

This trace flag enables lightweight execution profiling infrastructure in
SQL Server 2016 and 2017. This allows you to collect execution plans
and many execution metrics for the queries in the system with little
CPU overhead. I am going to discuss it in more details in Chapter 5.

To summarize – in SQL Server 2014 and below, enable T1118, T2371 and,
potentially, T1117. In SQL Server 2016 and above, enable T2371 unless all
databases have compatibility level of 130 or above. After that – look at all
other trace flags in the system and understand what they are doing. Some
trace flags may be inadvertently installed by third-party tools and can
negatively affect server performance.

Server Options
SQL Server provides many configuration settings. I’ll cover many of them
in depth later in the book; however, there are a few settings worth
mentioning here.

Optimize for Ad-hoc Workloads
The first one is Optimize for Ad-hoc Workloads. This configuration option
controls how SQL Server caches execution plans of ad-hoc (non-
parameterized) queries. When it is disabled (by default), SQL Server caches
full execution plans of those statements, which may significantly increase
plan cache memory usage. As the opposite, when this setting is enabled,
SQL Server starts by caching the small structure (just a few hundred bytes)
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called plan stub, replacing it with the full execution plan if an ad-hoc query
is executed the second time.

In majority of the cases, ad-hoc statements are not executed repeatedly, and
it is beneficial to enable Optimize for Ad-hoc Workloads setting in every
system. It could significantly reduce plan cache memory usage at cost of
infrequent additional recompilations of ad-hoc queries. Obviously, this
setting would not affect caching behavior of parameterized queries and T-
SQL database code.

NOTE
Starting with SQL Server 2019 and in Azure SQL Database, you can control Optimize
for Ad-hoc Workload behavior on the database level with the
OPTIMIZE_FOR_AD_HOC_WORKLOADS database scoped configuration.

Max Server Memory
The second important setting is Max Server Memory, which controls how
much memory SQL Server can consume. Database engineers love to debate
how to properly configure it, and there are different approaches to
calculating the proper value for the setting. Many engineers even suggest
leaving the default value in place and allowing SQL Server to manage it
automatically. In my opinion, it is best to fine-tune that setting, but it’s
important to do so correctly (Chapter 7 will discuss the details). An
incorrect setting will impact SQL Server performance more than if you
leave the default value in place.

One particular issue I often encounter during system health checks is severe
underprovisioning of this setting. Sometimes people forget to change it after
hardware or VM upgrades; other times, it’s incorrectly calculated in
nondedicated environments, where SQL Server is sharing the server with
other applications. In both cases, you can get immediate improvements by
increasing Max Server Memory or even setting it to the default value until
you perform full analysis later.
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Affinity Mask
You need to check SQL Server affinity and, potentially, set affinity mask if
SQL Server is running on hardware with multiple non-uniform memory
access (NUMA) nodes. In modern hardware, each physical CPU usually
becomes a separate NUMA node. If you restrict SQL Server from using
some of the physical cores, you need to balance SQL Server CPUs (or
schedulers – see chapter 2) evenly across NUMAs. For example, if you are
running SQL Server on a server with two 18-core Xeon processors and
limiting SQL Server to 24 cores, you need to set affinity mask to utilize 12
cores from each physical CPU. This will give you better performance than
having SQL Server use 18 cores from the first processor and 6 cores from
the second.

Listing 1-2 shows how to analyze SQL Server schedulers (CPUs)
distribution between NUMA nodes. Look at the count of schedulers for
each parent_node_id column in the output.

Example 1-2. Checking the distribution of NUMA node schedulers (CPUs)
SELECT 
  parent_node_id 
  ,COUNT(*) as [Schedulers] 
  ,SUM(current_tasks_count) as [Current] 
  ,SUM(runnable_tasks_count) as [Runnable] 
FROM sys.dm_os_schedulers 
WHERE status = 'VISIBLE ONLINE' 
GROUP BY parent_node_id;

Parallelism
It is important to check parallelism settings in the system. Default settings,
like MAXDOP = 0 and Cost Threshold for Parallelism = 5, do not work
well in modern systems. As with Max Server Memory, it is better to fine-
tune the settings based on the system workload (Chapter 6 will discuss this
in detail). However, my rule of thumb for generic settings is:

Set MAXDOP to 1/4 of the number of available CPUs in OLTP
and half those in Data Warehouse systems. Do not exceed the
number of CPUs in the NUMA node.
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Set Cost Threshold for Parallelism to 50.

Starting with SQL Server 2016 and in Azure SQL Server Database, you can
set MAXDOP on the database level using the command ALTER
DATABASE SCOPED CONFIGURATION SET MAXDOP. This is useful
when the instance hosts databases that handle different workloads.

Configuration Settings
As with trace flags, analyze other changes in configuration settings that
have been applied on the server. You can examine current configuration
options using the sys.configurations view. Unfortunately, SQL Server does
not provide a list of default configuration values to compare, so you need to
hardcode it, as shown in Listing 1-3. I am including just a few configuration
settings to save space, but you can download the full version of the script
from this book’s companion website.

Example 1-3. Detecting changes in server configuration settings
DECLARE 
    @defaults TABLE 
    ( 
        name SYSNAME NOT NULL PRIMARY KEY,  
        def_value SQL_VARIANT NOT NULL 
    ) 
INSERT INTO @defaults(name,def_value) VALUES('backup compression 
default',0);  
INSERT INTO @defaults(name,def_value) VALUES('cost threshold for 
parallelism',5);  
INSERT INTO @defaults(name,def_value) VALUES('max degree of 
parallelism',0); 
INSERT INTO @defaults(name,def_value) VALUES('max server memory 
(MB)',2147483647); 
INSERT INTO @defaults(name,def_value) VALUES('optimize for ad hoc 
workloads',0);  
/* Other settings are ommited in the book */ 
SELECT 
    c.name, c.description, c.value_in_use, c.value 
    ,d.def_value, c.is_dynamic, c.is_advanced 
FROM 
    sys.configurations c JOIN @defaults d ON 
        c.name = d.name 
WHERE 
    c.value_in_use <> d.def_value OR 
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    c.value <> d.def_value 
ORDER BY 
    c.name;

Figure 1-3 shows the sample output of the code. The discrepancy between
value and value_in_use columns indicates pending configuration changes
that require restart to take an effect. The is_dynamic column shows if
configuration option can be modified without restart.

Figure 1-3. Non-default server configuration options.

Configuring Your Databases
As the next step in analyzing your configuration, you’ll need to validate
several database settings and configuration options. Let’s look at them.

Database Settings
SQL Server allows you to change multiple database settings, tuning
behavior to workload and other requirements. I’ll cover many of them later
in the book; however, there are a few settings I would like to discuss here.

The first one is Auto Shrink. When this option is enabled, SQL Server
periodically shrinks the database and releases unused free space from the
files to the OS. While this looks appealing and promises to reduce disk
space utilization, it may introduce issues.

Implementing this database shrink process, automatically or through the
command DBCC SHRINKFILE, works on the physical level. It locates
empty space in the beginning of the file and moves allocated extents from
the end of the file there, without taking extent ownership into consideration.
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This introduces noticeable load and lead to the serious index fragmentation.
What’s more, in many cases it’s useless: the database files simply expand
again as the data grows. It’s always better to manage file space manually
and disable Auto Shrink.

Another database option, Auto Close, controls how SQL Server caches data
from the database. When it’s enabled, SQL Server removes data pages from
the buffer pool and execution plans from the plan cache when the database
does not have any active connections. This will lead to performance impact
with the new workload when data needs to be cached and queries need to be
compiled again.

With very few exceptions, you should disable Auto Close. One such
exception may be an instance that hosts a large number of rarely accessed
databases. Even then, I would consider keeping this option disabled and
allowing SQL Server to retire cached data in the normal way.

Make sure that Page Verify option is set to CHECKSUM. This will detect
consistency errors more efficiently and helps to resolve database corruption
cases.

Pay attention to the database recovery model. If the databases are in
SIMPLE mode, in case of disaster or human error it would be impossible to
recover the data beyond the last FULL database backup. If you find the
database in this mode, immediately discuss it with the stakeholders, making
sure that they understand the risk of data loss.

Database Compatibility Level controls SQL Server’s compatibility and
behavior on the database level. For example, if you are running SQL Server
2019 and have a database with a compatibility level of 130 (SQL Server
2016), SQL Server will behave as if the database is running on SQL Server
2016. Keeping the databases on the lower compatibility levels simplifies
SQL Server upgrades by reducing possible regressions; however, it also
blocks you from getting some new features and enhancements.

As a general rule, run databases on the latest compatibility level that
matches the SQL Server version. Be careful when you change it: as with
any version change, this may lead to regressions. Test the system before the
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change and make sure you can roll back the change if needed, especially if
the database has a compatibility level of 110 (SQL Server 2012) or below.
Increasing compatibility level to 120 (SQL Server 2014) or above will
enable a new cardinality estimation model and may significantly change
execution plans for the queries. Test the system thoroughly to understand
the impact of the change.

You can force SQL Server to use legacy cardinality estimation models with
the new database compatibility levels by setting
LEGACY_CARDINALITY_ESTIMATION database option to ON in SQL
Server 2016 and above, or by enabling server-level trace flag T9481 in SQL
Server 2014. This approach will allow you to perform upgrade or
compatibility level changes in phases, reducing impact to the system.
(Chapter 5 will cover cardinality estimation in more detail.)

Transaction Log Settings
SQL Server uses write-ahead logging, persisting information about all
database changes in a transaction log. SQL Server works with transaction
logs sequentially, in merry-go-round fashion. In most cases, you won’t need
multiple log files in the system – they make database administration more
complicated and do not improve performance.

Internally, SQL Server splits transaction logs into chunks called Virtual Log
Files (VLF) and manages them as single units. For example, SQL Server
cannot truncate and reuse a VLF if it contains just a single active log record.
Pay attention to the number of VLFs in the database. Too few of them will
lead to very large VLFs, which make log management and truncation
suboptimal. Too many small VLFs will degrade the performance of
transaction log operations. Try not to exceed several hundred VLFs in
production systems.

The number of VLFs SQL Server adds when it grows a log depends on
SQL Server version and the size of the grows. In most cases, it creates 8
VLFs when the growth size is between 64MB and 1GB or 16 VLFs with
above 1GB growth. Do not use percent-based auto-growth configuration
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because it generates lots of unevenly sized VLFs. Change the log auto-
growth setting to grow the file in chunks – I usually use chunks of 1,024
MB, which generates 128MB VLFs unless I need very large transaction log.

You can count the VLFs in the database with sys.dm_db_log_info data
management view in SQL Server 2016 and above. In older versions of SQL
Server, you can obtain the information by running DBCC LOGINFO. If the
transaction log isn’t configured well, consider rebuilding it. You can do this
by shrinking the log to the minimal size and growing it in chunks of
1,024MB to 4,096 MB.

Do not auto-shrink transaction log files. They will grow again and affect
performance when SQL Server zeroes out the file. It is better to pre-allocate
the space and manage log file size manually. Do not restrict the maximum
size and auto-growth, though – you want logs to grow automatically in case
of emergencies. (Chapter 11 will provide more details on how to
troubleshoot transaction-log issues.)

Data Files and Filegroups
By default, SQL Server creates new databases using the single-file
PRIMARY filegroup and one transaction log file. Unfortunately, this
configuration is suboptimal from performance, database management and
High Availability standpoints.

SQL Server tracks space usage in the data files through system pages called
allocation maps. In systems with highly volatile data, allocation maps can
be a source of contention: SQL Server serializes access to them during their
modifications (more about this in Chapter 10). Each data file has its own set
of allocation map pages and you can reduce contention by creating multiple
files in the filegroup with the active modifiable data.

Ensure that data is evenly distributed across multiple data files in the same
filegroup. SQL Server uses an algorithm called Proportional Fill, which
writes most data to the file that has the most free space. Evenly sized data
files will help to balance those writes, reducing allocation maps contention.
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Make sure that all data files in the filegroup have the same size and auto-
growth parameters, specified in MBs.

You may also want to enable the AUTOGROW_ALL_FILES filegroup
option (available in SQL Server 2016 and above), which triggers auto-
growth for all files in the filegroup simultaneously. You can use trace flag
T1117 for this in prior versions of SQL Server, but remember that this flag
is set on the server level and will affect all databases and filegroups in the
system.

It is often impractical or impossible to change the layout of existing
databases. However, you may need to create new filegroups and move data
around during performance tuning. Here are a few suggestions for doing so
efficiently:

Create multiple data files in filegroups with volatile data. I usually
start with four files and increase the number if I see latching issues
(see Chapter 10). Make sure that all data files have the same size
and auto-growth parameters specified in MB; enable the
AUTOGROW_ALL_FILES option. For filegroups with read-only
data, one data file is usually enough.

Do not spread clustered indexes, and nonclustered indexes, or large
object (LOB) data across multiple filegroups. This rarely helps
with performance and may introduce issues in cases of database
corruption.

Place related entities (for example, Orders and OrderLineItems) in
the same filegroup. This will simplify database management and
disaster recovery.

Keep the PRIMARY filegroup empty if possible.

Figure 1-4 shows an example of a database layout for a hypothetical
shopping-cart system. The data is partitioned and spread across multiple
filegroups with the goal of minimizing downtime and utilizing partial
database availability in case of disaster.  It will also improve your backup1
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strategy by implementing partial database backups and excluding read-only
data from FULL backups.
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Figure 1-4. Database layout for a shopping cart system.

Analyzing SQL Server Error Log
SQL Server Error Log is another place I usually check at the beginning of
troubleshooting. I like to see any errors it has, which can point to some
areas to follow up. For example, errors 823 and 824 can indicate issues with
disk subsystem and/or database corruption.

You can read the content of the log in SSMS. You can also get it
programmatically using the xp_readerrorlog system stored procedure. The
challenge here is the amount of data in the log: the noise from the
information messages may hide useful data.

The code in Listing 1-4 helps you to address that problem. It allows you to
filter out unnecessary noise and focus on the error messages. You can
control the behavior of the code with the following variables:
@StartDate and @EndDate

Define the time for analysis: @NumErrorLogs

Specifies the number of log files to read if SQL Server rolls them
over: @ExcludeLogonErrors

Omits logon auditing messages: @ShowSurroundingEvents
and @ExcludeLogonSurroundingEvents

These allow you to retrieve the information messages around the error
entries from the log. The time window for those messages is controlled by
the @SurroundingEventsBeforeSeconds and
@SurroundingEventsAfterSeconds variables.

The script produces two outputs. The first one shows the entries from the
error log that include word error. When @ShowSurroundingEvents
parameter is enabled, it would also provide log entries around those error
lines. You can also exclude some of log entries that contain the word error
from the output by inserting them to @ErrorsToIgnore table.
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Example 1-4. Analyzing SQL Server Error Log
IF OBJECT_ID('tempdb..#Logs',N'U') IS NOT NULL DROP TABLE #Logs; 
IF OBJECT_ID('tempdb..#Errors',N'U') IS NOT NULL DROP TABLE 
#Errors; 
go 
CREATE TABLE #Errors 
( 
  LogNum INT NULL, 
  LogDate DATETIME NULL, 
  ID INT NOT NULL identity(1,1), 
  ProcessInfo VARCHAR(50) NULL, 
  [Text] VARCHAR(MAX) NULL, 
  PRIMARY KEY(ID) 
); 
CREATE TABLE #Logs 
( 
  [LogDate] DATETIME NULL, 
  ProcessInfo VARCHAR(50) NULL, 
  [Text] VARCHAR(max) NULL 
); 
DECLARE  
  @StartDate DATETIME = DATEADD(DAY,-7,GETDATE()) 
  ,@EndDate DATETIME = GETDATE() 
  ,@NumErrorLogs INT = 1 
  ,@ExcludeLogonErrors BIT = 1 
  ,@ShowSurroundingEvents BIT = 1 
  ,@ExcludeLogonSurroundingEvents BIT = 1 
  ,@SurroundingEventsBeforeSecond INT = 5 
  ,@SurroundingEventsAfterSecond INT = 5  ,@LogNum INT = 0; 
 
DECLARE 
  @ErrorsToIgnore TABLE 
  ( 
    ErrorText NVARCHAR(1024) NOT NULL 
  ); 
 
INSERT INTO @ErrorsToIgnore(ErrorText) 
VALUES 
  (N'Registry startup parameters:%'), 
  (N'Logging SQL Server messages in file%'), 
  (N'CHECKDB for database%finished without errors%'); 
 
WHILE (@LogNum <= @NumErrorLogs)  
BEGIN  
  INSERT INTO #Errors(LogDate,ProcessInfo,Text) 
    EXEC [master].[dbo].[xp_readerrorlog]  
      @LogNum, 1, N'error', NULL, @StartDate, @EndDate, N'desc'; 
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  IF @@ROWCOUNT > 0 
    UPDATE #Errors SET LogNum = @LogNum WHERE LogNum IS NULL;   
  SET @LogNum += 1; 
END; 
 
IF @ExcludeLogonErrors = 1 
  DELETE FROM #Errors WHERE ProcessInfo = 'Logon'; 
 
DELETE FROM e 
FROM #Errors e 
WHERE EXISTS 
( 
  SELECT * 
  FROM @ErrorsToIgnore i 
  WHERE e.Text LIKE i.ErrorText 
); 
 
-- Errors only 
SELECT * FROM #Errors ORDER BY LogDate DESC; 
 
IF @@ROWCOUNT > 0 AND @ShowSurroundingEvents = 1 
BEGIN 
  DECLARE 
    @LogDate DATETIME 
    ,@ID INT = 0 
 
  WHILE 1 = 1 
  BEGIN 
    SELECT TOP 1 @LogNum = LogNum, @LogDate = LogDate, @ID = ID  
    FROM #Errors  
    WHERE ID > @ID 
    ORDER BY ID; 
 
    IF @@ROWCOUNT = 0 
      BREAK; 
 
    SELECT  
      @StartDate = DATEADD(SECOND, -@SurroundingEventsBeforeSecond, 
@LogDate) 
      ,@EndDate = DATEADD(SECONd, @SurroundingEventsAfterSecond, 
@LogDate); 
 
    INSERT INTO #Logs(LogDate,ProcessInfo,Text) 
      EXEC [master].[dbo].[xp_readerrorlog]  
        @LogNum, 1, NULL, NULL, @StartDate, @EndDate; 
  END; 
 
  IF @ExcludeLogonSurroundingEvents = 1 
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    DELETE FROM #Logs WHERE ProcessInfo = 'Logon'; 
 
  DELETE FROM e 
  FROM #Logs e 
  WHERE EXISTS 
  ( 
    SELECT * 
    FROM @ErrorsToIgnore i 
    WHERE e.Text LIKE i.ErrorText 
  ); 
 
  SELECT * FROM #Logs ORDER BY LogDate DESC; 
END

I am not going to put the full list of possible errors here – it may be
excessive and, in many cases, is system specific. But you need to analyze
any suspicious data from the output and understand its possible impact on
the system.

Finally, I suggest setting up alerts for high-severity errors in SQL Server
Agent, if this has not already been done. You can read Microsoft
documentation on how to do that.

Consolidating Instances and Databases
You can’t talk about SQL Server troubleshooting without discussing
database and SQL Server instances consolidation. While consolidating
often reduces hardware and licensing costs, it doesn’t come for free; you
need to analyze its possible negative impact on the current or future system
performance.

There is no universal consolidation strategy that can be used with every
project. You should analyze the amount of data, load, hardware
configuration, and your business and security requirements when making
this decision. However, as a general rule, avoid consolidating OLTP and
Data Warehouse/Reporting databases on the same server when they are
working under a heavy load (or, if they are consolidated, consider splitting
them). Data warehouse queries usually process large amounts of data,
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which leads to heavy I/O activity and flushes the content of the buffer pool.
Taken together, this negatively affects the performance of other systems.

In addition, analyze your security requirements when consolidating
databases. Some security features, such as Audit, affect the entire server and
add performance overhead for all databases on the server. Transparent Data
Encryption (TDE) is another example: even though it is a database-level
feature, SQL Server encrypts tempdb when either of the databases on the
server has TDE enabled. This leads to performance overhead for all other
systems. As a general rule, do not keep databases with different security
requirements on the same instance of SQL Server. Look at the trends and
spikes in metrics and separate databases from each other when needed. (I
will provide code to help you analyze CPU, I/O and Memory usage on a
per-database basis later in the book.)

I suggest utilizing virtualization and consolidating multiple VMs on one or
a few hosts, instead of putting multiple independent and active databases on
a single SQL Server instance. This will give you much better flexibility,
manageability, and isolation between the systems, especially if multiple
SQL Server instances are running on the same server. It is much easier to
manage their resource consumption when you virtualize them.

Observer Effect
The production deployment of every serious SQL Server system requires
implementing a monitoring strategy. This may include third-party
monitoring tools, code built based on standard SQL Server technologies, or
both.

A good monitoring strategy is essential for SQL Server production support.
It helps you to be more proactive and reduces incident detection and
recovery times. Unfortunately, it does not come for free–every type of
monitoring adds the overhead to the system. In some cases, this overhead
may be negligible and acceptable; in others it may significantly affect
server performance.
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During my career as an SQL Server consultant, I’ve seen many cases of
inefficient monitoring. For example, one client was using a tool that
provided information about index fragmentation by calling the
sys.dm_db_index_physical_stats function, in DETAILED mode, every four
hours for every index in the database. This introduced huge spikes in I/O
and cleared the buffer pool, leading to a noticeable performance hit.
Another client used a tool that constantly polled various DMVs, adding
significant CPU load to the server.

Fortunately, in many cases, you will be able to see those queries and
evaluate their impact during system troubleshooting. This is not always the
case, however, with other technologies, for example with monitoring based
on Extended Events. (I will talk about methods for detecting inefficient
queries in Chapter 4). Extended Events is a great technology that allows
you to troubleshoot complex problems in SQL Server. It is not, however,
the best choice as a profiling tool. Some events are heavy and may
introduce large overhead in busy environments.

Let’s look at the example and create an xEvents session that captures
queries running in the system, as shown in Listing 1-5.

Example 1-5. Creating an xEvents session to capture queries in the system
CREATE EVENT SESSION CaptureQueries ON SERVER 
ADD EVENT sqlserver.rpc_completed 
( 
  SET collect_statement=(1) 
  ACTION 
  ( 
    sqlos.task_time,sqlserver.client_app_name 
    ,sqlserver.client_hostname 
    ,sqlserver.database_name 
    ,sqlserver.nt_username 
    ,sqlserver.sql_text 
  ) 
), 
ADD EVENT sqlserver.sql_batch_completed 
( 
  ACTION 
  ( 
    sqlos.task_time 
    ,sqlserver.client_app_name 
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    ,sqlserver.client_hostname 
    ,sqlserver.database_name 
    ,sqlserver.nt_username 
    ,sqlserver.sql_text 
  ) 
), 
ADD EVENT sqlserver.sql_statement_completed 
ADD TARGET package0.event_file 
(SET FILENAME=N'C:\PerfLogs\LongSql.xel',MAX_FILE_SIZE=(200)) 
WITH 
( 
  MAX_MEMORY =4096 KB 
  ,EVENT_RETENTION_MODE=ALLOW_SINGLE_EVENT_LOSS 
  ,MAX_DISPATCH_LATENCY=5 SECONDS 
);

Next, deploy it to the server that operates under a heavy load with a large
number of concurrent requests. Measure the throughput in the system, with
and without xEvents session running. Obviously, be careful—and don’t run
it on the production server!

Figure 1-5 illustrates CPU load and number of batch requests per second in
both scenarios on one of my servers. As you can see, enabling xEvents
session decreased throughput by more than 20%. To make matters worse, it
would be very hard to detect the existence of that session on the server.
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Figure 1-5. Server throughput with and without an active xEvents session.

Obviously, the degree of impact would depend on the system’s workload. In
either case, check for any unnecessary monitoring or data-collection tools
when you do the troubleshooting.

The bottom line: Evaluate the monitoring strategy and estimate its overhead
as part of your analysis, especially when the server hosts multiple
databases. For example, Extended Events work at the server level. While
you can filter the events based on database_id field, the filtering occurs
after an event has been fired. This can affect all databases on the server.

Summary
System troubleshooting is a holistic process that requires you to analyze
your entire application ecosystem. You need to look at hardware, OS and
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virtualization layers, and at SQL Server and database configuration and
adjust them as needed.

SQL Server provides many settings that you can use to fine-tune the
installation to the system workload. There are also best practices that apply
to most systems, including enabling IFI and Optimize for Ad-Hoc
Workloads settings, increasing the number of files in tempdb, turning on
some trace flags, disabling Auto Shrink, and setting up correct auto-growth
parameters for database files.

In the next chapter, we’ll talk about one of the most important components
in SQL Server, SQLOS, and a troubleshooting technique called Wait
Statistics.

Troubleshooting Checklist
Troubleshoot for the following items:

Perform a high-level analysis of hardware, network and disk
subsystem

Discuss host configuration and load in virtualized environments
with infrastructure engineers

Check OS and SQL Server versions, editions and patching level

Check if instant file initialization is enabled

Analyze trace flags

Enable Optimize for Ad-Hoc Workloads

Check memory and parallelism settings on the server

Look at tempdb settings (including number of files); check for
trace flag T1118 and potentially T1117, in SQL Server versions
prior to 2016

Disable Auto Shrink for databases
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Validate data and t-log file settings

Check number of VLFs in transaction log files

Check errors in SQL Server Log

Check for unnecessary monitoring in the system

1  For a deep dive into data partitioning and disaster recovery strategies, please see my book Pro
SQL Server Internals (2 nd  ed., Apress, 2016). 
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Chapter 2. SQL Server
Execution Model and Wait
Statistics

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be Chapter 2 of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

It is impossible to troubleshoot SQL Server instances without understanding
its execution model. You need to know how SQL Server runs tasks and
manages resources if you want to detect bottlenecks in the system. We will
cover those questions in this chapter.

First, the chapter will describe SQL Server’s architecture and major
components. Next, it will discuss SQL Server’s execution model and
introduce you to the popular troubleshooting technique called Wait
Statistics. It will also cover several data management views commonly used
during troubleshooting. Finally, it will provide you an overview of Resource
Governor, which you can configure to segregate different workloads in the
system.
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SQL Server: High-Level Architecture
As you know, SQL Server is a very complex product that consists of dozens
of components and subsystems. It is impossible to cover all of them here,
but in this section, you’ll get a high-level overview. For the sake of
understanding, we’ll divide these components and subsystems into seven
categories, as shown in Figure 2-1. Let’s talk about them.

Figure 2-1. Major SQL Server Components

The Protocol Layer handles communication between SQL Server and client
applications. It uses an internal format called Tabular Data Stream (TDS) to
transmit data using network protocols such as TCP/IP or Name Pipes. If a
client application and SQL Server are running on the same machine, you
can use another protocol called Shared Memory.

NOTE
It is worth checking what protocols are enabled when you troubleshoot client
connectivity issues. Some SQL Server editions, for example Express and Developer,
disable TCP/IP and Name Pipes by default. They do not accept remote client connections
until you enable network protocols in the SQL Server Configuration Manager utility.
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The Query Processor layer is responsible for query optimization and
execution. It parses, optimizes and manages compiled plans for the queries,
and orchestrates all aspects of query execution.

The Storage Engine is responsible for data access and management in SQL
Server. It works with the data on disk, manages transaction logs, and
handles transactions, locking and concurrency along with a few other
functions.

The In-Memory OLTP Engine supports In-Memory OLTP in SQL Server. It
works with memory-optimized tables and is responsible for data
management and access to those tables, native compilation, data persistence,
and all other aspects of the technology.

There are layers of abstraction between the components. For example,
Query Interop (not shown in Figure 2-1) allows the Query Processor to work
with row-based and memory-optimized tables, transparently routing
requests either to Storage or to In-Memory OLTP engines.

The most critical abstraction layer is SQL Server Operating System
(SQLOS), which isolates other SQL Server components from the operating
systems and deals with scheduling, resource management and monitoring,
exception handling, and many other aspects of SQL Server behavior. For
example, when any SQL Server component needs to allocate memory, it
does not call OS API functions: it requests memory from SQLOS. This
allows SQL Server granular control over execution and internal resource
usage without relying on the OS.

Finally, since the introduction of Linux support in SQL Server 2017, there is
another component called Platform Abstraction Layer (PAL), which serves
as a proxy between SQLOS and operating systems. Except for few
performance-critical use cases, SQLOS does not call OS API directly,
relying on PAL instead. This architecture allows SQL Server’s code to
remain almost identical in Windows and Linux, which significantly speeds
up development and product improvements.

From a troubleshooting standpoint, you’ll see very little difference between
SQL Server on Windows and on Linux. Obviously, you’ll use different
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techniques when analyzing the SQL Server ecosystem and OS
configuration. However, both platforms behave the same when you start to
analyze issues inside SQL Server, so I am not going to differentiate between
them in this book.

Let’s look at the layers in more detail, beginning with SQLOS.

SQLOS and the Execution Model
Database servers are expected to handle a large number of user requests, and
SQL Server is no exception. On a very high level, SQL Server assigns those
requests to separate threads, executing the requests simultaneously. Except
the cases when the server is idle, the number of active threads exceeds the
number of CPUs in the system, and efficient scheduling is the key to good
server performance.

Early versions of SQL Server relied on Windows scheduling. Unfortunately,
Windows (and Linux) are general purpose OSs, which means they use
preemptive scheduling. They allocate a time interval, or time quantum, to a
thread to run, then switch to other threads when it expires. This is an
expensive operation that requires switching between user and kernel modes,
negatively affecting system performance.

In SQL Server 7.0, Microsoft introduced the first version of User Mode
Scheduler (UMS)-a thin layer between Windows and SQL Server that was
primarily responsible for scheduling. It used cooperative scheduling, with
SQL Server threads coded to voluntarily yield every 4ms, allowing other
threads to execute. This approach significantly reduced expensive context
switching in the system.

NOTE
Some SQL Server processes, like extended stored procedures, CLR routines, external
languages and a few others, may still run in preemptive scheduling mode.
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Microsoft continued to make improvements in UMS in SQL Server 2000
and, finally, in SQL Server 2005 redesigned it to the much more robust
SQLOS. In later versions of SQL Server, SQLOS is responsible for
scheduling, memory and I/O management, exception handling, CLR and
external languages hosting, and quite a few other functions.

When you start an SQL Server process, SQLOS creates a set of schedulers
that manage workload across CPUs. The number of schedulers matches the
number of logical CPUs in the system, with additional scheduler created for
a Dedicated Admin Connection (DAC). For example, if you have two quad-
core physical CPUs with hyper-threading enabled, SQL Server will create
17 schedulers in the system. For all practical purposes, you can think of
schedulers as the CPUs; I will use those terms interchangeably throughout
the book.

NOTE
The Dedicated Admin Connection is your last resort troubleshooting connection. It
allows you to access SQL Server if it becomes unresponsive and does not accept normal
connections. I will talk about it in Chapter 13.

Each scheduler will be in an ONLINE or OFFLINE state, depending on its
affinity mask setting and core-based licensing model. The schedulers
usually do not migrate between CPUs; however, it is possible, especially
under heavy load. Nevertheless, in most cases this behavior does not affect
the troubleshooting process.

The schedulers are responsible to manage the set of worker threads,
sometimes called workers. The maximum number of workers in a system is
specified by the Max Worker Thread configuration option. The default value
of zero indicates that SQL Server calculates the maximum number of
worker threads based on number of schedulers in the system. In most cases,
you do not need to change this default value—in fact, don’t change it unless
you know exactly what you are doing.
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Each time there is a task to execute, it is assigned to an idle worker. When
there are no idle workers, the scheduler creates a new one. It also destroys
idle workers after 15 minutes of inactivity or in case of memory pressure.
Each worker uses 512KB of RAM in 32-bit and 2MB of RAM in 64-bit
SQL Server for the thread stack.

Workers do not move between schedulers; tasks do not move between
workers. SQLOS, however, can create child tasks and assign them to
different workers, for example in the case of parallel execution plans. This
may explain situations when some schedulers are running under heavier
loads than others – some workers could end up with more expensive tasks
from time to time.

You can think about workers as the logical representation of OS threads, and
tasks as the unit of works those threads handle.

In most cases, we focus on tasks during troubleshooting. There is an
exception, however: when a task is in the PENDING state, which means that
it is waiting for available worker after the task had been created. This is
completely normal, and workers are usually assigned to tasks very quickly.
However, it can also indicate a very dangerous condition when the system
does not have enough workers to handle the requests. I will discuss how to
detect and address that issue in Chapter 13.

Besides PENDING, a task may be in five other possible states:

RUNNING

The task is currently executing on the scheduler.

RUNNABLE

The task is waiting for the scheduler to be executed.

SUSPENDED

The task is waiting for an external event or resource.

SPINLOOP
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The task is processing a spinlock. Spinlocks are synchronization objects
that protect some internal objects. SQL Server may use them when it
expects that access to the object will be granted very quickly, avoiding
context switching for the workers. I will talk about troubleshooting
spinlock issues in Chapter 13.

DONE

The task is complete.

The first three states are the most important and common. Each scheduler
has at most one task in the RUNNING state. In addition, it has two different
queues—one for RUNNABLE and one for SUSPENDED tasks. When the
RUNNING task needs some resources—a data page from a disk, for
example—it submits an I/O request and changes the state to SUSPENDED.
It stays in the SUSPENDED queue until the request is fulfilled and the page
has been read. After that, when it is ready to resume execution, the task is
moved to the RUNNABLE queue.

Perhaps the closest real-life analogy to this process is a grocery-store
checkout line. Think of cashiers as schedulers and customers as tasks in the
RUNNABLE queue. A customer who is currently checking out is similar to
a task in the RUNNING state.

If item is missing a UPC code, a cashier sends a store worker to do a price
check. The cashier suspends the checkout process for the current customer,
asking her or him to step aside (to the SUSPENDED queue). When the
worker comes back with the price information, the customer moves to the
end of the checkout line (the end of the RUNNABLE queue).

Of course, SQL Server’s execution is much more efficient than a real-life
store, where customers must wait patiently in line for the price check to
complete. (A customer in the end of the RUNNABLE queue would
probably wish for such efficiency!)
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Wait Statistics
With exception of initialization and clean-up, a task spends its time
switching between RUNNING, SUSPENDED and RUNNABLE states, as
shown in Figure 2-2. The total execution time will include time in
RUNNING state, when task actually executed; time in RUNNABLE state,
when the task is waiting for scheduler (CPU) to execute; and time in
SUSPENDED state, when task is waiting for resources.

Figure 2-2. Task life cycle

In a nutshell, the goal of any performance-tuning process is improving
system throughput by reducing query execution times. You can achieve this
by reducing the time that query tasks spend in any of those states.

You can decrease query RUNNING time by upgrading hardware and
moving to faster CPUs or by reducing amount of work tasks perform with
query optimization.

You can shrink RUNNABLE time by adding more CPU resources or
reducing the load on the system.

www.datasense.ir



However, in most cases, you will get the most benefit by focusing on the
time that tasks spend in SUSPENDED state while waiting for resources.

SQL Server tracks the cumulative time tasks spend in SUSPENDED state
for different types of waits. You can view this data through the
sys.dm_os_wait_stats view to get a quick sense of the main bottlenecks in
your system and further fine-tune your troubleshooting strategy.

The code in Listing 2-1 shows you the wait types that take the most time in
your system (filtering out some benign wait types, mainly related to internal
SQL Server processes that spend most time waiting). The data is collected
from the time of the last SQL Server restart, or since you last cleared it with
the DBCC SQLPERF(’sys.dm_os_wait_stats', CLEAR) command. Each
new SQL Server version introduces new wait types. Some are useful for
troubleshooting; others are benign and will need to be filtered out.

Example 2-1. Getting top wait types in the system (SQL Server 2012 and
above)
;WITH Waits 
AS 
( 
  SELECT  
    wait_type, wait_time_ms, waiting_tasks_count,signal_wait_time_ms 
    ,wait_time_ms - signal_wait_time_ms AS resource_wait_time_ms 
    ,100. * wait_time_ms / SUM(wait_time_ms) OVER() AS Pct 
    ,100. * SUM(wait_time_ms) OVER(ORDER BY wait_time_ms DESC) / 
        NULLIF(SUM(wait_time_ms) OVER(), 0) AS RunningPct 
 ,ROW_NUMBER() OVER(ORDER BY wait_time_ms DESC) AS RowNum 
  FROM sys.dm_os_wait_stats WITH (NOLOCK) 
  WHERE  
    wait_type NOT IN /* Filtering out non-essential system waits */ 
    
(N'BROKER_EVENTHANDLER',N'BROKER_RECEIVE_WAITFOR',N'BROKER_TASK_STOP
' 
    
,N'BROKER_TO_FLUSH',N'BROKER_TRANSMITTER',N'CHECKPOINT_QUEUE',N'CHKP
T' 
    ,N'CLR_SEMAPHORE',N'CLR_AUTO_EVENT',N'CLR_MANUAL_EVENT' 
    
,N'DBMIRROR_DBM_EVENT',N'DBMIRROR_EVENTS_QUEUE',N'DBMIRROR_WORKER_QU
EUE' 
    
,N'DBMIRRORING_CMD',N'DIRTY_PAGE_POLL',N'DISPATCHER_QUEUE_SEMAPHORE' 

1
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,N'EXECSYNC',N'FSAGENT',N'FT_IFTS_SCHEDULER_IDLE_WAIT',N'FT_IFTSHC_M
UTEX' 
 ,N'HADR_CLUSAPI_CALL',N'HADR_FILESTREAM_IOMGR_IOCOMPLETION' 
    ,N'HADR_LOGCAPTURE_WAIT',N'HADR_NOTIFICATION_DEQUEUE' 
    
,N'HADR_TIMER_TASK',N'HADR_WORK_QUEUE',N'KSOURCE_WAKEUP',N'LAZYWRITE
R_SLEEP' 
    ,N'LOGMGR_QUEUE',N'ONDEMAND_TASK_QUEUE' 
    ,N'PARALLEL_REDO_WORKER_WAIT_WORK',N'PARALLEL_REDO_DRAIN_WORKER' 
    ,N'PARALLEL_REDO_LOG_CACHE',N'PARALLEL_REDO_TRAN_LIST' 
    ,N'PARALLEL_REDO_WORKER_SYNC' 
,N'PREEMPTIVE_SP_SERVER_DIAGNOSTICS' 
    ,N'PREEMPTIVE_OS_LIBRARYOPS' 
,N'PREEMPTIVE_OS_COMOPS', N'PREEMPTIVE_OS_PIPEOPS' 
    ,N'PREEMPTIVE_OS_GENERICOPS' 
,N'PREEMPTIVE_OS_VERIFYTRUST' 
    ,N'PREEMPTIVE_OS_FILEOPS' 
,N'PREEMPTIVE_OS_DEVICEOPS' 
    ,N'PREEMPTIVE_OS_QUERYREGISTRY' 
,N'PREEMPTIVE_XE_CALLBACKEXECUTE' 
    ,N'PREEMPTIVE_XE_DISPATCHER',N'PREEMPTIVE_XE_GETTARGETSTATE' 
    ,N'PREEMPTIVE_XE_SESSIONCOMMIT',N'PREEMPTIVE_XE_TARGETINIT' 
    
,N'PREEMPTIVE_XE_TARGETFINALIZE',N'PWAIT_ALL_COMPONENTS_INITIALIZED' 
    
,N'PWAIT_DIRECTLOGCONSUMER_GETNEXT',N'PWAIT_EXTENSIBILITY_CLEANUP_TA
SK' 
    ,N'QDS_PERSIST_TASK_MAIN_LOOP_SLEEP',N'QDS_ASYNC_QUEUE' 
    ,N'QDS_CLEANUP_STALE_QUERIES_TASK_MAIN_LOOP_SLEEP' 
    
,N'REQUEST_FOR_DEADLOCK_SEARCH',N'RESOURCE_QUEUE',N'SERVER_IDLE_CHEC
K' 
    ,N'SLEEP_BPOOL_FLUSH',N'SLEEP_DBSTARTUP',N'SLEEP_DCOMSTARTUP' 
    
,N'SLEEP_MASTERDBREADY',N'SLEEP_MASTERMDREADY',N'SLEEP_MASTERUPGRADE
D' 
    ,N'SLEEP_MSDBSTARTUP',N'SLEEP_SYSTEMTASK',N'SLEEP_TASK' 
    
,N'SLEEP_TEMPDBSTARTUP',N'SNI_HTTP_ACCEPT',N'SOS_WORK_DISPATCHER' 
    ,N'SP_SERVER_DIAGNOSTICS_SLEEP',N'SQLTRACE_BUFFER_FLUSH' 
    ,N'SQLTRACE_INCREMENTAL_FLUSH_SLEEP',N'SQLTRACE_WAIT_ENTRIES' 
    ,N'STARTUP_DEPENDENCY_MANAGER',N'WAIT_FOR_RESULTS' 
    ,N'WAITFOR',N'WAITFOR_TASKSHUTDOWN',N'WAIT_XTP_HOST_WAIT' 
    
,N'WAIT_XTP_OFFLINE_CKPT_NEW_LOG',N'WAIT_XTP_CKPT_CLOSE',N'WAIT_XTP_
RECOVERY' 
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,N'XE_BUFFERMGR_ALLPROCESSED_EVENT',N'XE_DISPATCHER_JOIN',N'XE_DISPA
TCHER_WAIT' 
    ,N'XE_LIVE_TARGET_TVF',N'XE_TIMER_EVENT') 
) 
SELECT 
  w1.wait_type AS [Wait Type] 
  ,w1.waiting_tasks_count AS [Wait Count] 
  ,CONVERT(DECIMAL(12,3), w1.wait_time_ms / 1000.0) AS [Wait Time] 
  ,CONVERT(DECIMAL(12,1), w1.wait_time_ms / w1.waiting_tasks_count)  
        AS [Avg Wait Time] 
  ,CONVERT(DECIMAL(12,3), w1.signal_wait_time_ms / 1000.0)  
        AS [Signal Wait Time] 
  ,CONVERT(DECIMAL(12,1), w1.signal_wait_time_ms / 
w1.waiting_tasks_count)  
        AS [Avg Signal Wait Time] 
  ,CONVERT(DECIMAL(12,3), w1.resource_wait_time_ms / 1000.0)  
        AS [Resource Wait Time] 
  ,CONVERT(DECIMAL(12,1), w1.resource_wait_time_ms / 
w1.waiting_tasks_count)  
        AS [Avg Resource Wait Time] 
  ,CONVERT(DECIMAL(6,3), w1.Pct)  
        AS [Percent] 
  ,CONVERT(DECIMAL(6,3), w1.RunningPct)  
        AS [Running Percent] 
FROM 
 Waits w1 
 
WHERE 
 w1.RunningPct <= 99 OR w1.RowNum = 1 
ORDER BY 
 w1. RunningPct   
OPTION (RECOMPILE, MAXDOP 1);

Figure 2-2 shows the output of this code from one of the production servers,
early in the troubleshooting process. I can immediately see that majority of
the waits in the system relate to blocking (LCK*) and I/O
(PAGEIOLATCH*). This makes it much easier to decide where to focus my
troubleshooting efforts.
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Figure 2-3. Example of sys.dm_os_wait_stats output

This troubleshooting approach is called Wait Statistics Analysis. It’s the one
of the most frequently used troubleshooting and performance-tuning
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techniques in SQL Server. Figure 2-4 illustrates a typical troubleshooting
cycle using Wait Statistics Analysis.

Figure 2-4. Typical Wait Statistics Analysis Troubleshooting Cycle

First, you identify the main bottleneck in the system by analyzing the top
waits. Next, you confirm it with other tools and techniques and pinpoint the
root cause of the problem. Finally, you fix it and repeat the cycle.

WARNING
A word of caution: This process may never end. While there are always opportunities to
make things better, at some point further improvements become impractical. Remember
the Pareto Principle – you will get 80% of improvements by spending 20% of your time
– and don’t waste time on nonessential tuning.

This looks very easy in theory; unfortunately, it is more complicated in real
life. Many issues are related to each other, which can hide the real causes of
bottlenecks. To choose a very common example: excessive disk waits are
often triggered not by bad I/O performance, but by poorly optimized queries
that constantly flush the buffer pool and overload the disk subsystem.

Figure 2-5 shows some of the high-level dependencies you might run into.
This diagram is by no means exhaustive, but it illustrates the danger of
tunnel vision during troubleshooting.
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Figure 2-5. Dependencies and Issues

I considered listing the most common waits and possible root causes here,
but I don’t want you to start chasing symptoms rather than causes. Rather
than jumping right to a list, you read the book first so that you can
understand the possible dependencies involved.

I’ll start going through specific issues and troubleshooting techniques in the
upcoming chapters, but for now, let’s cover important data management
views in SQL Server related to SQLOS and the SQL Server execution
model.

Execution Model–Related Data Management
Views
SQL Server comes with a very large number of data management views
(DMVs). For details on all of them, you can consult the Microsoft
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Documentation. Here, I will focus on just a small subset that I regularly use
during troubleshooting. We will look at many others later in the book.

sys.dm_os_wait_stats
As you saw earlier, the sys.dm_os_wait_stats view provides information
about waits in the system. It will tell you how many times the wait occurs
(waiting_task_count) along with cumulative times for resource
(resource_wait_time_ms) and signal (signal_wait_time_ms) waits. The
resource wait time indicates how long a task waited for the resource staying
in SUSPENDED queue. The signal wait indicates the wait for the CPU in
RUNNABLE queue after the resource wait was over.

For example, let’s say a task is requested to read a data page from disk. The
I/O request might take 6ms; then, the task might wait for another
millisecond to resume the execution. If you view the wait data for this,
you’ll see 6ms of resource waits, 1ms of signal waits, and 7ms of total wait
time.

Listing 2-2 shows you how to compare cumulative signal and resource waits
in the system.

Example 2-2. Signal versus resource waits
SELECT 
    SUM(signal_wait_time_ms) AS [Signal Wait Time (ms)] 
    ,CONVERT(DECIMAL(7,4), 100.0 * SUM (signal_wait_time_ms) /  
        SUM(wait_time_ms)) AS [% Signal waits] 
    ,SUM(wait_time_ms - signal_wait_time_ms) AS [Resource Wait Time 
(ms)] 
    ,CONVERT (DECIMAL(7,4), 100.0 * sum(wait_time_ms - 
signal_wait_time_ms) /  
        SUM(wait_time_ms)) AS [% Resource waits] 
FROM 
    sys.dm_os_wait_stats WITH (NOLOCK);

In most cases, signal waits should not exceed 10 to 15% of total wait time.
A higher number may indicate a CPU bottleneck, with tasks spending a lot
of time in the RUNNABLE queue. Do not jump to the conclusion that you
need to add more CPUs, though—it may be entirely possible to address the
problem with performance tuning.
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Pay attention to how often waits occur. Sometimes, you’ll see waits with a
low waiting_task_count and high total wait time. Depending on the
situation, you may or may not want to analyze them, especially during the
initial phase of troubleshooting. Such waits are often triggered by
production incidents or other atypical conditions.

Finally, make sure that you are working with representative data. As I
mentioned, statistics are collected from the time of the last SQL Server
restart, and workload on the server may change over time.

I usually ask customers to clear the waits a few days before starting the
troubleshooting. It is safe to use the DBCC
SQLPERF(’sys.dm_os_wait_stats', CLEAR) command in production,
although it may affect data collection in some third-party monitoring tools.
As another option, you can collect two separate snapshots of wait statistics
and calculate the delta between them. I am including the script to do that to
the companion materials of the book.

sys.dm_exec_session_wait_stats
Starting with SQL Server 2016, you can look at waits on the session level,
using the sys.dm_exec_session_wait_stats view. This is extremely useful
when you need to troubleshoot performance of long-running queries or slow
stored procedures in the system. The view will show you the waits that
occurred during execution and help you pinpoint bottlenecks and areas to
research.

The columns and data in this view are similar to those in
sys.dm_os_wait_stats; you can easily adjust scripts to work in both
scenarios. Remember that data in sys.dm_exec_session_wait_stats clears
when a session opens and when the pooled connection resets.

You may notice that the data is not always updated for currently running
statements. You need to wait until a query completes for the data to become
available.

sys.dm_os_waiting_tasks
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The sys.dm_os_waiting_tasks view shows you a list of tasks that are
currently waiting in the SUSPENDED queue. This view is handy when the
server is overloaded or unresponsive and you want to understand why
sessions were suspended.

It is also very helpful when you troubleshoot concurrency issues and active
blocking in the system, because it shows you the session ID of the blocker
for the task (more in Chapter 8).

The most useful columns in this view are:

session_id

ID of the waiting session.

wait_type

Type of wait the session is waiting for.

wait_duration_ms

The duration of the wait.

blocking_session_id

The session blocking the current task. As I mention, this column is
extremely useful when you troubleshoot active blocking in the system.

resource_address

Information on the resource the task is waiting for.

You may have more than one row per session in the output when you deal
with parallel execution plans.

sys.dm_exec_requests
The sys.dm_exec_requests view provides detailed information on each
request that is executing on the server. This gives you a great at-a-glance
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snapshot of what is happening now and allows you to pinpoint most CPU or
I/O intensive queries currently running in the system.

This view will return information for both user and system sessions. You
can filter out most system sessions by using WHERE session_id > 50
predicate, although you may have some system sessions with id greater than
50 nowadays.

The most useful columns in this view are:

session_id

The ID for the session. Unlike with sys.dm_os_waiting_tasks, you get a
single row in the output per session unless you are using Multiple Active
Result Sets (MARS) in your system.

start_time

The time when the request started.

total_elapsed_time

The request’s duration.

status

The current request status (RUNNING, RUNNABLE, SUSPENDED,
SLEEPING). SLEEPING status indicates an idle connection.

wait_type, wait_time, wait_resource, blocking_session_id

These appear if the request is currently suspended. Like
sys.dm_os_waiting_tasks, the blocking_session_id column is very useful
when you are troubleshooting active blocking in the system.

cpu_time, logical_reads, reads, writes, granted_query_memory, dop

These provide you with execution metrics.
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sql_handle, plan_handle

These allow you to obtain the statement and its execution plan.

Listing 2-3 shows you the code that returns information about currently
running CPU-intensive requests, along with connection information. This
code requires SQL Server 2012 to run – you can remove TRY_CONVERT
function if you have older version of SQL Server.

Example 2-3. Using sys.dm_exec_requests view
SELECT  
    er.session_id 
    ,er.request_id 
    ,DB_NAME(er.database_id) as [database] 
    ,er.start_time 
    ,CONVERT(DECIMAL(21,3),er.total_elapsed_time / 1000.) AS 
[duration] 
    ,er.cpu_time 
    ,SUBSTRING( 
        qt.text,  
        (er.statement_start_offset / 2) + 1, 
            ((CASE er.statement_end_offset 
                WHEN -1 THEN DATALENGTH(qt.text) 
                ELSE er.statement_end_offset 
            END - er.statement_start_offset) / 2) + 1 
    ) AS [statement] 
    ,er.status 
    ,er.wait_type 
    ,er.wait_time 
    ,er.wait_resource 
    ,er.blocking_session_id 
    ,er.last_wait_type 
    ,er.reads 
    ,er.logical_reads 
    ,er.writes 
    ,er.granted_query_memory 
    ,er.dop 
    ,er.row_count 
    ,er.percent_complete 
    ,es.login_time 
    ,es.original_login_name 
    ,es.host_name 
    ,es.program_name 
    ,c.client_net_address 
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    ,ib.event_info AS [buffer] 
    ,qt.text AS [sql] 
    ,TRY_CONVERT(XML,p.query_plan) as [query_plan] 
FROM  
    sys.dm_exec_requests er WITH (NOLOCK) 
        OUTER APPLY sys.dm_exec_input_buffer 
            (er.session_id, er.request_id) ib 
        OUTER APPLY sys.dm_exec_sql_text(er.sql_handle) qt 
        OUTER APPLY  
            sys.dm_exec_text_query_plan 
            ( 
                er.plan_handle 
                ,er.statement_start_offset 
                ,er.statement_end_offset 
            ) p 
        LEFT JOIN sys.dm_exec_connections c WITH (NOLOCK) ON  
            er.session_id = c.session_id  
        LEFT JOIN sys.dm_exec_sessions es WITH (NOLOCK) ON  
            er.session_id = es.session_id 
WHERE 
    er.status <> 'background'  
AND er.session_id > 50 
ORDER BY  
    er.cpu_time desc 
OPTION (RECOMPILE, MAXDOP 1);

As a word of caution: getting a query execution plan with
sys.dm_exec_text_query_plan function is expensive. Comment it out if your
server is running under heavy CPU load.

sys.dm_os_schedulers
I do not use the sys.dm_os_schedulers view very often, only from time to
time. As you can guess by the name, this view provides information about
schedulers in the system. You can use it to get information about schedulers’
distribution across NUMA nodes and to analyze metrics from individual
schedulers.

I’ve already shown you the code for the first use case in Chapter 1, but it is
worth repeating. Check the count of schedulers in each NUMA node to see
if the CPU affinity has been set correctly.

Example 2-4. NUMA nodes schedulers statistics
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SELECT 
 parent_node_id 
 ,COUNT(*) as [Schedulers] 
 ,SUM(current_tasks_count) as [Current] 
 ,SUM(runnable_tasks_count) as [Runnable] 
FROM sys.dm_os_schedulers 
WHERE status = 'VISIBLE ONLINE' 
GROUP BY parent_node_id;

The current_tasks_count and runnable_tasks_count columns provide the
number of tasks in the RUNNING and RUNNABLE queues in each node. A
large runnable_tasks_count number may indicate a CPU bottleneck.
Remember, however, that the numbers show what is happening in the
system now and may not be representative over time. It is better to see
cumulative information, for example the percentage of signal waits (see
Listing 2-2) or CPU load overtime (see Chapter 6).

There are many other columns in the view that provide scheduler-specific
statistics, such as status, number of workers and tasks in various states,
number of context switches, CPU consumption and a few others. Check the
documentation for more details.

Resource Governor Overview
Resource Governor is an Enterprise Edition feature that allows you to
segregate and throttle different workloads on the server. Although it’s been
available for quite a long time, I consider Resource Governor a niche feature
– I rarely see it in the field. (You may even consider skipping this section,
and coming back if and when you have to deal with it.) Nevertheless,
remember to check if Resource Governor is configured in the system you
are troubleshooting – incorrect configuration can seriously impact server
throughput.

When enabled, Resource Governor separates the sessions between different
workload groups by calling classifier function at the time of the session’s
login. The classifier function is a simple user-defined function where you
can use various connection properties (login name, application name, client
IP address, etc.) to choose between workload groups.
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Each workload group has several parameters, such as MAXDOP, maximum
allowed CPU time for the request, and the maximum number of
simultaneous requests allowed in the group. The workgroups are also
associated with a resource pool, where you can customize resource usage
for associated workload groups.

The SQL Server documentation refers to resource pools as “the virtual SQL
Server instances inside of a SQL Server instance.” I do not think this is an
accurate definition, though, because resource pools do not provide enough
isolation from each other. However, you can control and limit CPU
bandwidth and affinity, along with query memory grants (see Chapter 7).

Starting with SQL Server 2014, you can also control disk throughput by
limiting resource pool IOPS. You cannot, however, control buffer pool
usage–it is shared across all pools.

There are two system workload groups and resource pools: internal and
default. As you can guess by the names, the first handles internal workload.
The second is responsible for all non-classified workload. You can change
the parameters of the default workload group without creating other user-
defined workload groups and pools.

Figure 2-6 shows a Resource Governor configuration for an example
scenario in which you want to separate OLTP and reporting workloads. This
will reduce the impact of reporting queries on critical OLTP transactions,
preventing them from saturating CPU and I/O.

www.datasense.ir



Figure 2-6. Example of Resource Governor Configuration

Resource Governor is useful, but it is not the easiest feature to configure and
maintain. You need to do some planning and math when you want to
configure resource throttling across multiple busy resource pools.

You also need to reevaluate the settings overtime, because hardware and
workload requirements may change. I recently had to troubleshoot a case
where a major disk subsystem upgrade did not improve system
performance. We found that I/O in the system had been throttled by a
MAX_IOPS_PER_VOLUME setting in the resource pool.

In conclusion, Resource Governor is good in use cases where you need to
segregate different workloads in a single database on a standalone server or
an instance that uses Failover Clustering. It is also useful for reducing the
impact of database maintenance. For example, you can limit CPU utilized
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by backup compression or I/O load from index maintenance by running
them in a separate resource pool.

I recommend looking at different technologies when you need to segregate a
different workload in the Always On Availability Groups setup. The
readable secondaries may provide better scalability in the long term.

In addition, when you need to segregate workloads from multiple databases
running on a single SQL Server instance, it’s usually better to split the
databases across multiple instances, and potentially virtualize them.

Summary
SQLOS is the vital subsystem responsible for scheduling and resource
management in SQL Server. At startup, it creates schedulers—one per
logical CPU—allocating the pool of worker threads to each scheduler to
manage. User and system tasks are assigned to the worker threads, which
perform the actual work.

SQL Server uses cooperative scheduling, with workers voluntarily yielding
every 4ms. The tasks constantly migrate through the RUNNING,
SUSPENDED, and RUNNABLE states while they are running on CPU or
waiting for CPU and resources. SQL Server tracks the different type of
waits and provides that information in sys.dm_os_wait_tasks view. You can
analyze the most common waits and identify bottlenecks in the system with
the troubleshooting process called Wait Statistics.

Be careful when analyzing waits; don’t jump to immediate conclusions.
Many performance issues may be related and can mask each other. You’ll
need to identify and confirm the root cause of the problem as part of your
analysis.

In the next chapter, we will dive deeper into troubleshooting particular
issues, starting with the disk, and learn how to diagnose and address them.

Troubleshooting Checklist
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Troubleshoot as follows:

Look at the waits in the system. Make sure that wait statistics are
representative.

Analyze percentages of signal and resource waits.

Validate Resource Governor configuration when present.

Triage the waits, looking for bottlenecks.

1  The code in Listing 2-1 is good for versions up to SQL Server 2019. To exclude other wait
types in future versions, see Microsoft’s documentation.
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Chapter 3. Troubleshooting
Disk Subsystem Issues

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be Chapter 3 of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

SQL Server is a very I/O intensive application: it is constantly reading data
from and writing data to disk. Good I/O throughput is essential for SQL
Server performance and health. Unfortunately, many SQL Server
installations are I/O bound, even with modern flash-based storage.

In this chapter, I will show you how to analyze and troubleshoot disk
subsystem performance issues. You will learn how SQL Server processes
I/O requests internally and how to identify and detect possible bottlenecks
through the entire I/O stack, on the SQL Server, OS, Virtualization and
Storage levels.

Next, I will talk about checkpoint process tuning, a common source of I/O
bottlenecks in busy OLTP systems.

Finally, I will cover the most common I/O-related waits you may encounter
in your system.
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Anatomy of the SQL Server I/O Subsystem
SQL Server never works with data pages directly in database files. Every
time a data page needs to be read or modified, SQL Server reads that page
to memory and caches it in the buffer pool. Each page in a buffer pool is
referenced by a buffer structure, sometimes simply called buffer. It includes
the page’s address in the data file, a pointer to the data page in the memory,
status information, and the page latching queue.

SQL Server uses latches to protect internal objects in memory preventing
their corruptions when multiple threads modifying them simultaneously.
The two most common types of latch are exclusive, which blocks any
access to the object, and shared, which allows simultaneous reads but
prevents modifications of the objects.

Conceptually, latches are similar to critical sections or mutexes in
application development languages. We will talk about latches in detail in
Chapter 10.

The location of data pages in a buffer pool does not represent the order in
which they are stored in the database files. SQL Server, however, can
efficiently locate the page in the buffer pool when needed. Every time SQL
Server accesses the page there, it performs a logical read. When the page is
not present in memory and needs to be read from disk, the physical read
also occurred.

When data needs to be modified, SQL Server changes the pages in the
buffer pool, marking them as dirty, then writes log records to the transaction
log file. It saves dirty pages to the data files asynchronously in the
Checkpoint and, sometimes, the Lazy Writer processes. We’ll discuss both
of those processes later in this chapter and transaction logs in Chapter 11.
For now, remember that data modifications require SQL Server to read data
pages from disk if they have not been already cached.

Now let’s look at how SQL Server works with I/O in more detail.

Scheduling and I/O
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As you remember from chapter 2, SQL Server uses cooperative scheduling,
with multiple workers running on CPUs in a rotating fashion. The workers
voluntarily yield when the short quantum expires, allowing other workers to
proceed. This model requires SQL Server to use asynchronous I/O as much
as possible – it is impossible for workers to wait until I/O request is
completed, preventing other workers from executing.

By default, all SQL Server schedulers handle I/O requests. You can override
this behavior and bind I/O to specific CPUs by setting the affinity I/O mask.
In theory, this may help improve I/O throughput in very busy OLTP
systems; however, I rarely find it necessary. In most cases, you’ll achieve
better results by performing optimizations and reducing CPU and I/O load.

You can read about affinity I/O masking in the Microsoft documentation.

Every scheduler has a dedicated I/O queue. When a worker needs to
perform an I/O operation, it creates an I/O request structure, puts it to the
scheduler’s queue and finally issues an asynchronous OS API I/O call. It
does not wait until the request is completed; it either continues to run, doing
other things, or suspends itself, moving to the SUSPENDED queue.

When a new worker starts to run on the scheduler (switching to RUNNING
state), it goes through the scheduler’s I/O queue. The I/O request structures
contain enough information to check if the asynchronous OS API call has
been completed, along with a pointer to callback function that the worker
calls to complete the I/O request in SQL Server.

I know that this sounds complicated – please bear with me and we’ll look at
the details in the next section. The key things I’d like you to remember are:

All active schedulers are handling I/O requests by default.

Most I/O requests in SQL Server use asynchronous OS API calls. This
is true even for write-ahead logging – the worker that issues the
COMMIT statement may be suspended until the log record is written to
disk; however, the OS API write command will be executed
asynchronously.
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The I/O request may be completed by a different worker than the one that
issues it.

You can see a list of pending I/O requests in the
sys.dm_io_pending_io_requests view. The io_pending_ms_ticks
column provides the duration of that request. The io_pending column
indicates if the OS API call has been completed and if the request is
waiting for a worker to finish it. This may help you to determine if
request latency is being affected by CPU load in the system.

Now, as promised, let’s look at that process again, with more concrete
examples of reading data pages from disk.

Data Reads
When SQL Server needs to access a data page, it checks if the page already
exists in buffer pool. If it does not, the worker allocates the buffer for the
page, protecting it with an exclusive latch. This prevents workers from
accessing the page until it is read – they will be blocked, waiting for the
latch to clear.

Next, the worker creates the I/O request structure, puts it in the scheduler
I/O queue, and initiates an OS API read request. Then it tries to acquire
another shared latch on the buffer, which is blocked by the incompatible,
exclusive latch held there. The worker then suspends itself with
PAGEIOLATCH wait (Figure 3-1 illustrates that state).
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Figure 3-1. Reading data page from disk – initiating read

When another worker switches to a RUNNING state, it checks to see if any
I/O requests in the scheduler’s queue have been completed. If so, the
worker calls the callback function to finalize the operation: this validates
that page is not corrupted and removes the exclusive latch from the buffer.
The worker that submitted the I/O request can then resume and access the
data page (Figure 3-2).
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Figure 3-2. Reading data page from disk – completing the read

There are several errors that may occur during I/O requests. All of them are
severe, and you need to set up alerts in the system for them.

Error 823 indicates that the OS I/O API call was not successful.
This is often a sign of hardware issues.

Errors 605 and 824 indicate logical consistency issues with the
data pages. When you encountered either of these errors,
immediately check whether the database is corrupted, using the
DBCC CHECKDB command. You may also encounter those errors
in case of faulty I/O drivers, which can corrupt data pages during
transfer.

Error 833 tells you that an I/O request (OS API call) took longer
than 15 seconds to return. This is abnormal; check the health of the
disk subsystem when you see this error.

Error 825 indicates that an I/O request failed and had to be retried
in order to succeed. As with Error 833, check the health of the disk
subsystem.

When troubleshooting those errors, you can look for the details in your SQL
Server error log (use the code from Listing 1-4) and system event log.

It is very common for SQL Server to read multiple data pages in a single
I/O request. For example, it uses read-ahead logic, reading multiple data
pages during scans. As result, the query may perform thousands of logical
reads with just a handful of physical reads. Another example is ramp-up
reads, which is when SQL Server reads a large number of pages on each I/O
request, trying to fill the buffer pool quickly on startup.

Data Writes
SQL Server handles data writes very similarly to data reads. In most cases,
those writes are done asynchronously using a scheduler’s I/O queues, as
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you just saw in the previous examples. Obviously, the callback function will
be implemented differently in different I/O operations.

When you change some data in the database, SQL Server modifies data
pages in the buffer pool, reading pages from disk if needed. It generates log
records for the modifications and saves them to the transaction log. The
transaction is not considered to have been committed until the log records
are hardened on disk. While, technically, you can treat write-ahead logging
as synchronous writes, SQL Server uses an asynchronous I/O pattern for
log writes.

SQL Server writes modified data pages in user databases asynchronously
during checkpoint. This process finds dirty data pages in the buffer pool and
saves them to disk. It tries to minimize the number of disk requests by
combining and writing adjacent modified pages together in a single I/O
operation when possible.

Another SQL Server process, called lazy writer, periodically sweeps the
buffer pool to remove data pages that have not been recently accessed,
freeing up the memory. In normal circumstances, lazy writer skips dirty
data pages; however, it may also write them to disk if there is memory
pressure in the system.

There are, as always, some exceptions. For example, during a bulk import
operation, SQL Server allocates a set of buffers in the buffer pool and
reuses them, writing data to the database outside of checkpoint. This
preserves the content of the buffer pool, so it isn’t flushed by massive data
imports.

Checkpoint I/O may introduce issues on busy systems. I will talk about
checkpoint tuning later in this chapter. But first, let’s take a holistic look at
the entire storage subsystem.

The Storage Subsystem: A Holistic View
Troubleshooting slow I/O performance in SQL Server is not an easy task.
I’ve seen many heated discussions between database and infrastructure
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teams. Database engineers generally complain about slow disk
performance, while the storage engineers analyze the metrics from SAN
devices with sub-millisecond latency and insist that all issues are on the
SQL Server side. Neither team is right. They usually make the same
mistake: oversimplifying the storage subsystem to just a couple of
components. However, the storage subsystem isn’t that simple.

Figure 3-3 shows a very high-level diagram of the network-based storage
subsystem, with many details missing. (It also references some
troubleshooting tools. We’ll get to those, but don’t focus on them yet.) The
point here is that bad I/O performance can be caused by any component, so
you need to analyze all layers in the stack.
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Figure 3-3. Storage Subsystem (Network-Based)

There is also an option of using direct-attached storage (DAS). In this
configuration, the storage either installed locally on the server (think about
NVMe drives) or directly connected to it. This setup eliminates network
from the storage path and may provide you better I/O performance in the
system. As the downside, you’d lose the flexibility of external storage,
where you can add additional space and perform maintenance on the fly,
transparently to the server.

Every storage subsystem has a “tipping point” after which the latency of
I/O requests will start to grow exponentially with increase in throughput
and IOPS (I/O operations per second). For example, you may get a 1-
millisecond response with an IOPS workload of 1,000 and a 3-millisecond
response with an IOPS workload of 50,000. However, you might cross the
tipping point at 100,000 IOPS and start to get double-digit or even triple-
digit latency.

Every component in the stack will have its own tipping point. For example,
low queue depth in the HBA adapter may lead to queueing on the controller
level as the number of I/O requests increases. In this case SQL Server will
suffer from high latency and poor I/O performance; however, all SAN
metrics will be perfectly healthy, with no latency at all.

You can use the DiskSpd utility to test storage subsystem performance. That
utility emulates SQL Server’s workload in the system. You can download it
from GitHub.

As I’ve noted, you’ll need to look at all storage subsystem components
when you troubleshoot bad I/O performance. Nevertheless, the place to start
is analyzing overall storage latency and the number of data SQL Server
reads and writes. You can do this by looking at sys.dm_io_virtual_file_stats
view.

sys.dm_io_virtual_file_stats view
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The sys.dm_io_virtual_file_stats view is the most important tool in SQL
Server I/O performance troubleshooting. This view provides I/O statistics
by database file, including number of I/O operations, amount of data read
and written, and information about stalls, or time for I/O requests to
complete. (I use the terms latency and stalls interchangeably throughout this
book.)

The data in this view is cumulative and is calculated from the time of the
SQL Server restart. Take two snapshots of the data and calculate the delta
between them (Listing 3-1 shows the code to do that). This code filters out
database files with low I/O activity, since their metrics are usually skewed
and not very useful.

Example 3-1. Using the sys.dm_io_virtual_file_stats view
CREATE TABLE #Snapshot 
( 
 database_id SMALLINT NOT NULL, 
 file_id SMALLINT NOT NULL, 
 num_of_reads BIGINT NOT NULL, 
 num_of_bytes_read BIGINT NOT NULL, 
 io_stall_read_ms BIGINT NOT NULL, 
 num_of_writes BIGINT NOT NULL, 
 num_of_bytes_written BIGINT NOT NULL, 
 io_stall_write_ms BIGINT NOT NULL 
); 
 
INSERT INTO 
#Snapshot(database_id,file_id,num_of_reads,num_of_bytes_read 
 
,io_stall_read_ms,num_of_writes,num_of_bytes_written,io_stall_write
_ms) 
 SELECT database_id,file_id,num_of_reads,num_of_bytes_read 
  
,io_stall_read_ms,num_of_writes,num_of_bytes_written,io_stall_write
_ms 
 FROM sys.dm_io_virtual_file_stats(NULL,NULL) 
OPTION (RECOMPILE); 
 
-- Set test interval (1 minute). Use larger intervals in production 
WAITFOR DELAY '00:01:00.000'; 
 
;WITH Stats(db_id, file_id, Reads, ReadBytes, Writes 
 ,WrittenBytes, ReadStall, WriteStall) 
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as 
( 
 SELECT 
  s.database_id, s.file_id 
  ,fs.num_of_reads - s.num_of_reads 
  ,fs.num_of_bytes_read - s.num_of_bytes_read 
  ,fs.num_of_writes - s.num_of_writes 
  ,fs.num_of_bytes_written - s.num_of_bytes_written 
  ,fs.io_stall_read_ms - s.io_stall_read_ms 
  ,fs.io_stall_write_ms - s.io_stall_write_ms 
 FROM 
  #Snapshot s JOIN  
sys.dm_io_virtual_file_stats(NULL, NULL) fs ON 
   s.database_id = fs.database_id and 
s.file_id = fs.file_id 
) 
SELECT 
 s.db_id AS [DB ID], d.name AS [Database] 
 ,mf.name AS [File Name], mf.physical_name AS [File Path] 
 ,mf.type_desc AS [Type], s.Reads  
 ,CONVERT(DECIMAL(12,3), s.ReadBytes / 1048576.) AS [Read 
MB] 
 ,CONVERT(DECIMAL(12,3), s.WrittenBytes / 1048576.) AS 
[Written MB] 
 ,s.Writes, s.Reads + s.Writes AS [IO Count] 
 ,CONVERT(DECIMAL(5,2),100.0 * s.ReadBytes /  
   (s.ReadBytes + s.WrittenBytes)) AS [Read %] 
 ,CONVERT(DECIMAL(5,2),100.0 * s.WrittenBytes /  
   (s.ReadBytes + s.WrittenBytes)) AS [Write 
%] 
 ,s.ReadStall AS [Read Stall] 
 ,s.WriteStall AS [Write Stall] 
 ,CASE WHEN s.Reads = 0  
  THEN 0.000 
  ELSE CONVERT(DECIMAL(12,3),1.0 * s.ReadStall / 
s.Reads)  
 END AS [Avg Read Stall]  
 ,CASE WHEN s.Writes = 0  
  THEN 0.000 
  ELSE CONVERT(DECIMAL(12,3),1.0 * s.WriteStall / 
s.Writes)  
 END AS [Avg Write Stall]  
FROM 
 Stats s JOIN  sys.master_files mf WITH (NOLOCK) ON 
  s.db_id = mf.database_id and 
  s.file_id = mf.file_id 
 JOIN  sys.databases d WITH (NOLOCK) ON  
  s.db_id = d.database_id   
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WHERE -- Only display files with more than 20MB throughput 
 (s.ReadBytes + s.WrittenBytes) > 20 * 1048576 
ORDER BY 
 s.db_id, s.file_id 
OPTION (RECOMPILE);

Figure 3-4 shows the output from the view.
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Figure 3-4. Sample output from sys.dm_io_vitual_file_stats

The goal is to keep stalls/latency metrics as low as possible. It is impossible
to define thresholds that can be applied to all systems, but my rule of thumb
is not to exceed 1 to 2-millisecond write stalls for transaction logs and 5 to
7- millisecond read and write stalls for data files when network storage is
used. The latency should be even lower, in the sub-millisecond range, when
you are using mode modern direct-attached drives.

Next, analyze throughput in the system. High stalls with low throughput
usually indicate performance issues outside of SQL Server. Don’t forget to
look at throughput across all files that share the same drive or controller.
High throughput in some files may impact the metrics in others that share
the same resource.

There is usually a correlation between throughput and stalls – the more data
you are reading and writing, the higher latency you’ll have. This correlation
is usually linear until you reach the tipping point, after which latency
increases very quickly.

A large amount of reads and read stalls in the data files is often
accompanied by a significant percent of PAGEIOLATCH waits and a low
Page Life Expectancy performance counter value. This indicates that a large
amount of data is constantly being read from disk. You need to understand
why that is happening. In most cases, it’s due to nonoptimized queries that
perform large scans reading data from disk. We will talk about how to
detect those queries in the next chapter.

Don’t discount the possibility, though, that the server is underprovisioned
and doesn’t have enough memory to accommodate an active dataset. That is
also entirely possible. In either case, adding extra memory may be a
completely acceptable solution that will reduce I/O load and improve
performance of the system. It is, obviously, not the best solution, but in
many cases it’s easier and cheaper to use hardware to solve the problem.

In users’ databases, large amount of writes and write stalls in data files
often indicate inefficient checkpoint configuration. You may get some
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improvements by tuning the checkpoint configuration, as I will show later
in the chapter. In the longer term, you may need to analyze if it is possible
to reduce the number of data pages SQL Server writes to disk. Some ways
to do this include removing unnecessary indexes; reducing page splits by
changing FILLFACTOR and tuning the index maintenance strategy;
decreasing the number of data pages by implementing data compression;
and, potentially, refactoring database schema and applications.

When you see large throughput and stalls in tempdb, identify what causes
them. The three most common causes are version store activity, massive
tempdb spills, and excessive usage of temporary objects. We will talk about
these in Chapter 9.

Finally, you can also get an idea of I/O latency by analyzing resource wait
time in PAGEIOLATCH and other I/O-related waits. This won’t give you
detailed information on a per-file basis, but it may be a good metric when
you look at systemwide I/O performance.

Performance Counters and OS Metrics
The sys.dm_io_virtual_file_stats view provides useful and detailed
information and points you in the right direction for further I/O
troubleshooting, but it has one limitation: it averages data over the sampling
interval.

This is completely acceptable when I/O latency is low. However, if latency
numbers are high, you’ll want to determine if performance is generally slow
or if the numbers have been skewed by some bursts in activity. You can do
this by looking at the performance counters correlating SQL Server and
disk metrics.

The troubleshooting process will vary slightly between Windows and
Linux. In Windows, the simplest way to analyze the metrics is using the
well-known PerfMon (Performance Monitor) utility. You can look at the
SQL Server and I/O performance counters together and correlate data from
them.
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Performance 
Object

Performance 
Counters

Description

Physical Disk Avg Disk Queue 
Length
 
   Avg 
Disk Read Queue 
Length
 
   Avg 
Disk Write Queue 
Length

Provides the average number of I/O requests (total, read, 
and write, respectively) queued during the sampling 
interval. Those numbers should be as low as possible. 
Spikes indicate that I/O requests are being queued at the 
OS level.

Current Disk 
Queue Length

Gives you the size of the I/O request queue when the 
metric was collected.

Avg Disk 
sec/Transfer
 
   Avg 
Disk sec/Read
 
   Avg 
Disk sec/Write

Indicates average latency for disk operations during the 
sampling interval. These numbers are usually similar to 
latency/stall metrics from the 
sys.dm_io_virtual_file_stats view when sampled over 
the same time period. However, because you typically 
measure sys.dm_io_virtual_file_stats over larger 
intervals, these counters will show you if I/O stalls were 
always high or if data has been affected by latency 
spikes.

Disk Transfers/sec
 
   Disk 
Reads/sec
 
   Disk 
Writes/sec
 

Displays the number of I/O operations and throughput at 
the time of the reading. Similar to latency counters, you 
can use them to analyze the uniformity of the disk 
workload.
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   Disk 
Bytes/sec
 
   Disk 
Read Bytes/sec
 
   Disk 
Write Bytes/sec

Avg Disk 
Bytes/Transfer
 
   Avg 
Disk Bytes/Read
 
   Avg 
Disk Bytes/Write

Shows the average size of I/O requests, which can help 
you understand I/O patterns in the system.

SQL Server: Buffer 
Manager

Checkpoint 
pages/sec
 
   
Background writer 
pages/sec

Shows the number of dirty pages written by the 
checkpoint process.

Lazy writer/sec Provides number of pages written by lazy writer process

Page reads/sec
 
   Page 
writes/sec

Display the number of physical reads and writes

Readahead 
pages/sec

Shows the number of pages read by read-ahead process.

SQL Server: 
Databases

Log Bytes 
Flushed/sec
 
   Log 
Flush Write Time 
(ms)
 
   Log 
Flushes/sec

Provide you the data about throughput, latency and 
number of write requests for transaction log writes. Use 
those counters to understand uniformity of log 
generation when you troubleshoot high log write latency

SQL Server: SQL 
Statistics

Batch Requests/sec While these two counters are not I/O-related, they can be 
used to analyze spikes in system workload that may lead 
to bursts in I/O activity.SQL Server: 

Databases
Transactions/sec
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Usually, I start by looking at Avg Disk sec/Read and Avg Disk sec/Write
latency counters, along with Avg Disk Queue Length. If I see any spikes in
their values, I add SQL Server–specific counters to identify what processes
may be leading to the bursts in activity.

Figure 3-5 illustrates one such example. You can see the correlation
between Checkpoint pages/sec and high Avg Disk sec/Write and Avg Disk
Queue Length values. This leads to the simple conclusion that the I/O
subsystem cannot keep up with bursts of writes from the checkpoint
process.
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Figure 3-5. Checkpoint and disk queueing

Pay attention to other applications installed on the server – it is possible that
they are responsible for I/O activity bursts or other issues.

Linux doesn’t offer the standard PerfMon utility; however, there are plenty
of free and commercial monitoring tools available. You can also use tools
like iostat, dstat, and iotop, which are included in major Linux distributions.
They provide general disk performance metrics on a per-process or system
level.

On the SQL Server side, you can access performance counters through
sys.dm_os_performance_counters view. Listing 3-2 shows you how to do
that.

Example 3-2. Using sys.dm_os_performance_counters view
 
CREATE TABLE #PerfCntrs 
( 
 collected_time DATETIME2(7) NOT NULL DEFAULT SYSDATETIME(), 
 object_name SYSNAME NOT NULL, 
 counter_name SYSNAME NOT NULL, 
 instance_name SYSNAME NOT NULL, 
 cntr_value BIGINT NOT NULL, 
 PRIMARY KEY (object_name, counter_name, instance_name) 
); 
 
;WITH Counters(obj_name, ctr_name) 
AS 
( 
 SELECT C.obj_name, C.ctr_name 
 FROM  
 ( 
  VALUES 
   ('SQLServer:Buffer Manager','Checkpoint 
pages/sec') 
   ,('SQLServer:Buffer Manager','Background 
writer pages/sec') 
   ,('SQLServer:Buffer Manager','Lazy 
writes/sec') 
   ,('SQLServer:Buffer Manager','Page 
reads/sec') 
   ,('SQLServer:Buffer Manager','Page 
writes/sec') 
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   ,('SQLServer:Buffer Manager','Readahead 
pages/sec') 
   ,('SQLServer:Databases','Log Flushes/sec') 
-- For all DBs 
   ,('SQLServer:Databases','Log Bytes 
Flushed/sec') -- For all DBs 
   ,('SQLServer:Databases','Log Flush Write 
Time (ms)') -- For all DBs 
   ,('SQLServer:Databases','Transactions/sec') 
-- For all DBs 
   ,('SQLServer:SQL Statistics','Batch 
Requests/sec')  
 ) C(obj_name, ctr_name) 
) 
INSERT INTO 
#PerfCntrs(object_name,counter_name,instance_name,cntr_value) 
 SELECT  
  pc.object_name, pc.counter_name, pc.instance_name, 
pc.cntr_value 
 FROM  
  sys.dm_os_performance_counters pc WITH (NOLOCK) 
JOIN Counters c ON 
   pc.counter_name = c.ctr_name AND 
pc.object_name = c.obj_name; 
 
WAITFOR DELAY '00:00:01.000'; 
 
;WITH Counters(obj_name, ctr_name) 
AS 
( 
 SELECT C.obj_name, C.ctr_name 
 FROM  
 ( 
  VALUES 
   ('SQLServer:Buffer Manager','Checkpoint 
pages/sec') 
   ,('SQLServer:Buffer Manager','Background 
writer pages/sec') 
   ,('SQLServer:Buffer Manager','Lazy 
writes/sec') 
   ,('SQLServer:Buffer Manager','Page 
reads/sec') 
   ,('SQLServer:Buffer Manager','Page 
writes/sec') 
   ,('SQLServer:Buffer Manager','Readahead 
pages/sec') 
   ,('SQLServer:Databases','Log Flushes/sec') 
-- For all DBs 
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   ,('SQLServer:Databases','Log Bytes 
Flushed/sec') -- For all DBs 
   ,('SQLServer:Databases','Log Flush Write 
Time (ms)') -- For all DBs 
   ,('SQLServer:Databases','Transactions/sec') 
-- For all DBs 
   ,('SQLServer:SQL Statistics','Batch 
Requests/sec')  
 ) C(obj_name, ctr_name) 
) 
SELECT  
 pc.object_name, pc.counter_name, pc.instance_name 
 ,CASE pc.cntr_type 
  WHEN 272696576 THEN  
   (pc.cntr_value - h.cntr_value) * 1000 /  
    
DATEDIFF(MILLISECOND,h.collected_time,SYSDATETIME()) 
  WHEN 65792 THEN  
   pc.cntr_value 
  ELSE NULL 
 END as cntr_value 
FROM  
 sys.dm_os_performance_counters pc WITH (NOLOCK) JOIN 
Counters c ON 
  pc.counter_name = c.ctr_name AND pc.object_name = 
c.obj_name 
 JOIN #PerfCntrs h ON 
  pc.object_name = h.object_name AND 
  pc.counter_name = h.counter_name AND 
  pc.instance_name = h.instance_name 
ORDER BY 
 pc.object_name, pc.counter_name, pc.instance_name 
OPTION (RECOMPILE);

You can also bring sys.dm_io_virtual_file_stats view to the analysis,
sampling its data and performance counters together every second. The
approach is the same one we just discussed – you’ll look at the correlation
between disk latency and activity and evaluate the general performance of
the I/O subsystem, identifying tipping points in the load.

Virtualization, HBA, and Storage Layers
There are several layers in the storage stack you may need to analyze in
addition to OS. They include virtualization, HBA/SCSI controller
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configuration, and the storage array itself.

I recommend working together with infrastructure and storage engineers
during troubleshooting.

SQL Server mostly operates in shared environments. It shares storage and
network infrastructure with other clients, and when virtualized, it runs on
the same physical host with other VMs. As I said earlier in this book, when
virtualization is being used, be sure to validate that the host is not
overcommitted, which could lead to all sorts of performance issues.

Unless you have a very simple SQL Server setup that uses local storage, I/O
requests will be serialized and sent over network. There are two typical
problems here: insufficient queue depth and noisy neighbors.

Insufficient queue depth

The first is insufficient queue depth somewhere in the I/O path.
Unfortunately, the default query depth may not be enough for a highly
demanding I/O workload. You’ll need to check and potentially increase
it in the datastore, vSCSI controller, and HBA adapter settings. The
typical sign of insufficient queue depth is low latency on the storage
combined with much higher latency in VM and/or OS, with disk
queueing present.

Noisy neighbors

The second problem is noisy neighbors. Multiple I/O intensive VMs
running on the same host may affect each other. Similarly, multiple
high-throughput servers sharing the same network and storage may
overload them. Unfortunately, troubleshooting noisy neighbor problem
is never easy and you need to analyze multiple components in the
infrastructure to detect it.
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A word of caution – storage arrays can handle a limitednumber of
outstanding requests. Increasing queue depth on a busy server could
increase the number of outstanding requests on the storage. You might shift
the bottleneck from the server to the storage layer, especially if the storage
serves requests from many busy systems.

The virtualization host and storage both expose throughput, IOPS, and
latency metrics for analysis. On virtualization layers, the metrics may vary
based on technology. For example, in Hyper-V you can use regular disk
performance counters on the host. In VMWare, you can get the data from
ESXTOP utility. In either case, the troubleshooting approach is very similar
to what we have already discussed. Look at the available metrics, correlate
data from them, and detect the bottlenecks in the I/O path.

Finally, check the storage configuration. Storage vendors usually publish
best practices for SQL Server workloads: they are a good starting point. Pay
attention to the allocation unit size’s alignment with the raid stripe size and
partition offset, though.

For example, a 1024 MB partition offset, 4 KB disk block, 64 KB allocation
unit, and 128 KB raid stripes are perfectly aligned, with each I/O request
served by a single disk. On the other hand, 96 KB raid stripes will spread 64
KB allocation units across two disks, which leads to extra I/O requests and
can seriously impact performance.

Again, it is always beneficial to work together with infrastructure and
storage engineers. They are the subject matter experts and may help you to
find the root cause of the problem faster than when you are working alone.

Finally, the best approach to get predictable performance in critical systems
is to use a dedicated environment. Run SQL Server on dedicated hardware
with direct-attached storage (DAS) to get the best performance possible.

Checkpoint Tuning
As we all know, SQL Server uses write-ahead logging. Transactions are
considered to be committed only after the log records are hardened in the
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transaction logs. SQL Server does not need to save dirty data pages to disk
at the same time – it can reapply the changes by replaying log records if
needed.

The checkpoint process saves data pages into the data files. The main goal
of checkpoint is reducing recovery time in event of an SQL crash or
failover: the fewer changes need to be replayed, the faster recovery will be.
The maximum desired recovery time is controlled at either the server level
or the database level. By default, both of them are 60 seconds.

NOTE
You should not consider the recovery target to be a hard value. In many cases, the
database will recover much faster than that. It is also possible for bursts of activity and
long running transactions to prolong recovery beyond the target time.

There are four different types of checkpoints:

Internal checkpoints

Internal checkpoints occur during some SQL Server operations, such as
starting database backup or creating a database snapshot.

Manual checkpoints

Manual checkpoint occur manually, as the name indicates, when users
trigger them with the CHECKPOINT command.

Automatic checkpoint

Historically, SQL Server used automatic checkpoints, with the recovery
interval controlled at the server level. The checkpoint process wakes up
once or few times each recovery interval and flushes dirty data pages to
disk. Unfortunately, this approach can lead to bursts of data writes,
which can be problematic in busy systems.
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Indirect checkpoint

Starting with SQL Server 2012, you have another option: indirect
checkpoint. With this method, SQL Server tries to balance I/O load by
executing checkpoints much more frequently – in some cases, even
continuously. This helps to mitigate bursts of data writes, making the
I/O load much more balanced. Use it instead of automatic checkpoint
whenever possible. Indirect checkpoint is controlled on a per-database
basis and enabled by default in databases created in SQL Server 2016
and above. However, SQL Server does not enable indirect checkpoint
automatically when you upgrade an SQL Server instance, or in SQL
Server 2012 and 2014. You can do it manually by setting up a recovery
target at the database level with the ALTER DATABASE SET

TARGET_RECOVERY_TIME command.

Let me show you an example from one system I worked with. The sample
of data from sys.dm_io_virtual_file_stats view over 1 minute had very high
write latency for the data files. However, the smaller samples (1 to 3
seconds) rarely showed any activity at all.

Figure 3-6 shows the data, with the 1-minute sample at the top and the 1-
second sample at the bottom.
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Figure 3-6. Sample sys.dm_io_virtual_file_stats with automatic checkpoint

This behavior led me to believe that the issue was related to checkpoint. I
confirmed this hypothesis by looking at the Checkpoint pages/sec, Disk
Writes/sec, and Avg Disk Queue Length performance counters. You can
clearly see that burst of disk writes from the checkpoint process in Figure 3-
5 earlier in the chapter, which shows the screenshot from PerfMon.
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Although this instance ran SQL Server 2016, it used automatic checkpoint,
because all databases had been upgraded from the earlier version of SQL
Server. Enabling indirect checkpoint in the system immediately changed the
I/O pattern, making it much more balanced.

You can see the performance counters in Figure 3-7. Notice that with
indirect checkpoint, you should use Background writer pages/sec instead of
the Checkpoint pages/sec counter.
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Figure 3-7. Indirect checkpoint performance counters

Figure 3-8 shows the output from a 1-minute sample in the
sys.dm_io_virtual_file_stats view. As you can see, latency went back to
normal.

Figure 3-8. Sample sys.dm_io_virtual_file_stats with indirect checkpoint

Indirect checkpoints do not completely eliminate I/O bursts. You can still
have them, especially if the system has some spikes in data modifications.
However, they are less frequent than with automatic checkpoints.

You may also need to tune the recovery target to get the most balanced I/O
load. In the case above, I got the best results with a 90-second target. Of
course, high values may increase recovery time in the system.

I/O Waits
SQL Server uses several different wait types related to I/O operations. It is
very common to see all of them present when the disk subsystem is not fast
enough. Let’s look at five of the most common:
ASYNC_IO_COMPLETION, IO_COMPLETION, WRITELOG,
WRITE_COMPLETION, and PAGEIOLATCH.
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ASYNC_IO_COMPLETION waits
This wait type occurs when SQL Server waits for asynchronous I/O
operations (read or write) for non-buffer pool pages to complete. Examples
include:

Internal checkpoint when you start database backup or run DBCC
CHECKDB

Reading GAM pages from data files

Reading data pages from database during database backup.
(Unfortunately, this tends to skew the average wait time, making it
harder to analyze.)

When I see significant presence of both ASYNC_IO_COMPLETION and
PAGEIOLATCH waits in the system, I perform general I/O
troubleshooting. If PAGEIOLATCH waits are not present, I look at how
often ASYNC_IO_COMPLETION occurs. I may ignore that wait if its
percentage is not very significant and disk latency is low.

IO_COMPLETION waits
The IO_COMPLETION wait type occurs during synchronous reads and
writes in data files and during some read operations in transaction log. A
few examples:

Reading allocation map pages from the database

Reading the transaction log during database recovery

Writing data to tempdb during sort spills

When you see significant percentages of this wait in the system, perform
general disk-performance troubleshooting. Pay specific attention to tempdb
latency and throughput; in my experience, bad tempdb performance is the
most common reason for this wait. We will talk more about tempdb
troubleshooting in Chapter 9.
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WRITELOG waits
As you can guess by the name, this wait occurs when SQL Server writes log
records to the transaction log. It is normal to see this wait in any system;
however, a large percentage may indicate a transaction-log bottleneck.

Look at average wait time and transaction log write latency in the
sys.dm_io_virtual_file_stats view during troubleshooting. High numbers
are impactful and may affect throughput in the system.

In addition to optimizing disk subsystem throughput, there are several other
things you can do to reduce that wait. We will discuss them in Chapter 11.

WRITE_COMPLETION waits
This wait occurs during synchronous write operations in database and log
files. In my experience, it is most common with database snapshots.

SQL Server maintains snapshot databases by persisting versions of data
pages that existed at time the snapshot was created. At checkpoints after the
snapshot was created, SQL Server reads old copies of data pages from data
files and saves them into the snapshot before saving dirty pages to disk.
This can significantly increase the amount of I/O in the system.

When you see this wait in the system, check if there are database snapshots
present. Remember that some internal processes, like DBCC CHECKDB,
also create internal database snapshots.

When snapshots are present and their usage is legitimate, you may need to
analyze how to improve disk performance to support them. In other cases,
you may need to remove them from the system if storage cannot keep up.

PAGEIOLATCH waits
As you already know, PAGEIOLATCH waits occur when SQL Server reads
data pages from disk. Those waits are very common and are present in any
system. Technically, there are six such waits, but only three are typically
present in the system:
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PAGEIOLATCH_EX

Occurs when the worker wants to update the data page and is waiting
for the page to be read from disk to the buffer pool.

PAGEIOLATCH_SH

Occurs when the worker wants to read the data page and is waiting for
the page to be read from disk to the buffer pool.

PAGEIOLATCH_UP

Occurs when the worker wants to update a system page (for example,
the allocation map) and is waiting for the page to be read from disk to
the buffer pool.

Excessive amounts of PAGEIOLATCH waits show that SQL Server is
constantly reading data from disk. This usually occurs under two
conditions. The first is an underprovisioned SQL Server: when the active
data does not fit into the memory. Second, and more often, it indicates the
presence of nonoptimized queries that scan unnecessary data, flushing the
contents of the buffer pool.

You can cross-check the data by looking at the Page Life Expectancy
performance counter, which shows how long data pages stay in the buffer
pool. As a baseline, you can generally use the value of 300 seconds per 4
GB of buffer pool memory: for example, 7,500 seconds on the server with
100 GB buffer pool.

You can see the value of Page Life Expectancy in the PerfMon utility or
with the sys.dm_os_performance_counters view, as shown in Listing 3-3. It
also returns values for individual NUMA nodes in the system.

Example 3-3. Getting Page Life Expectancy in the system
 
SELECT object_name, counter_name, instance_name, cntr_value as 
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[PLE(sec)] 
        FROM sys.dm_os_performance_counters WITH (NOLOCK) 
        WHERE counter_name = 'Page life expectancy' 
        OPTION (RECOMPILE);

A large percentage of PAGEIOLATCH waits always requires
troubleshooting. While it does not always introduce customer-facing
problems, especially with low-latency flash-based disk arrays, the data
growth may push the disk subsystem over the limit, which can become a
problem that quickly affects the entire system.

You can reduce the impact of PAGEIOLATCH waits by upgrading the disk
subsystem or adding more memory to the server. However, the best
approach is reducing the amount of data to read from disk by detecting and
optimizing inefficient queries. We’ll look at how to detect those queries in
the next chapter.

Summary
SQL Server uses cooperative scheduling and, in the majority of cases,
asynchronous I/O when it reads and writes data. By default, each scheduler
has its own I/O queue and handles I/O in the system.

The sys.dm_io_virtual_file_stats view provides I/O throughput and latency
metrics per database file. In a properly tuned system, the latency of
transaction log writes should not exceed 1 to 2 milliseconds, and the latency
of reads and writes to data files should not exceed 5 to 7 milliseconds with
network-based storage and should be even lower with DAS.

Look at the entire I/O stack when troubleshooting bad I/O performance.
The problem may be anywhere – in the OS, virtualization, network path, or
storage layers.

In many cases, high I/O latency is introduced by bursts in I/O activity.
Analyze and tune the checkpoint process – it is one of the most common
offenders in busy systems.
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In many cases, reducing disk activity will help you improve disk latency
and system performance. Query optimization is one of the best ways to
achieve that. We will look at how to detect non-optimized queries in the
system in the next chapter.

Troubleshooting Checklist
Troubleshoot the following:

Analyze disk subsystem latency with the
sys.dm_io_virtual_file_stats view

Check if high latency is caused by bursts in I/O activity by
analyzing SQL Server and OS performance counters.

Review I/O metrics at the VM and storage levels, paying attention
to noisy neighbors in your setup.

Check disk queue depth settings in the I/O stack.

Troubleshoot SQL Server checkpoint performance and switch to
indirect checkpoints.

Troubleshoot log performance if you see significant WRITELOG
waits (see Chapter 11).

Troubleshoot tempdb performance if you see significant
IO_COMPLETION waits and high tempdb usage and latency (see
Chapter 9).

Detect and optimize inefficient queries if you see high
PAGEIOLATCH waits in the system.
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Chapter 4. Detecting Inefficient
Queries

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be Chapter 4 of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

Inefficient queries exist in every system. They impact performance in many
ways, most notably by increasing I/O load, CPU usage and blocking in the
system. It is essential to detect and optimize them. We’ll start with detection
in this chapter, then move on to optimization strategies in subsequent
chapters.

This chapter discusses inefficient queries and their potential impact on your
system and provides guidelines for detecting them, starting with an
approach that uses plan cache-based execution statistics. Next, I will talk
about Extended Events and SQL Traces, and then cover Query Store. I’ll
wrap up the chapter by sharing a few thoughts on third-party monitoring
tools.

The Impact of Inefficient Queries
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During my career as a database engineer, I have yet to see a system that
wouldn’t benefit from query optimization. I’m sure they exist – after all, no
one calls me in to look at perfectly healthy systems. Nevertheless, those are
few and far between, and there are always opportunities to improve and
optimize.

Not every company prioritizes query optimization, though. It’s a time-
consuming and tedious process, and in many cases it’s cheaper, given the
benefits of speeding up development and time-to-market, to throw hardware
at the problem than to invest hours in performance tuning.

At some point, however, that approach leads to scalability issues. Poorly
optimized queries impact systems from many angles, but perhaps the most
obvious is disk performance. If the I/O subsystem cannot keep up with the
load of large scans, the performance of your entire system will suffer.

You can mask this problem, to a degree, by adding more memory to the
server. This increases the size of the buffer pool and allows SQL Server to
cache more data, reducing physical I/O. As amount of data in the system
grows over time, however, this approach may become impractical or even
impossible—especially in non-Enterprise editions of SQL Server that
restrict the maximum buffer pool size.

Another effect to watch for is that nonoptimized queries burn CPU on the
servers. The more data you process, the more CPU resources you consume.
A server might spend just a few microseconds per logical read and in-
memory data-page scan, but that quickly adds up as the number of reads
increases.

Again, you can mask this by adding more CPUs to the server. (Note,
however, that you will need to pay for additional licenses. In non-Enterprise
editions, expect a cap on the number of CPUs.) Moreover, adding CPUs
may not always solve the problem – nonoptimized queries will still
contribute to blocking in the system. While there are ways to reduce
blocking without performing query tuning, this can change system behavior
and has performance implications.
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The bottom line is: When you troubleshoot a system, always analyze
whether queries in the system are poorly optimized. Once you’ve done that,
estimate the impact of those inefficient queries.

While query optimization always benefits a system, it is not always simple,
nor does it always provide the best ROI for your efforts. More often than
not, you will at least need to tune some queries.

To put things in perspective: I perform query tuning when I see high disk
throughput, blocking, or high CPU load in the system. However, I may
initially focus my efforts elsewhere if data is cached in the buffer pool and
the CPU load is acceptable. I have to be careful and think about data growth,
though – it is possible that active data will one day outgrow the buffer pool,
which could lead to sudden and serious performance issues.

Fortunately, query optimization does not require an all-or-nothing approach!
You can achieve dramatic performance improvements by optimizing just a
handful of frequently executed queries. Let’s look at a few methods of how
we can detect them.

Plan-Cache-Based Execution Statistics
In most cases, SQL Server caches and reuses execution plans for queries.
For each plan in the cache, it also maintains execution statistics, including
the number of times the query ran, cumulative CPU time, and I/O load. You
can use this information to quickly pinpoint the most resource-intensive
queries for optimization. (We will discuss plan caching in more details in
Chapter 6.)

Analyzing plan cache-based execution statistics is not the most
comprehensive detection technique; it has quite a few limitations.
Nevertheless, it is very easy to use and, in many cases, good enough. It
works in all versions of SQL Server and it is always present in the system.
You don’t need to set up any additional monitoring to collect the data.
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NOTE
The code calls the sys.dm_exec_query_plan function for each cached plan in the system.
This is a CPU-intensive operation, so remove it if your server is CPU-bound. You may
also need to comment some of the columns in the statement, depending on the version
and patching level of your SQL Server instance.

You can get execution statistics using the sys.dm_exec_query_stats view (as
shown in Listing 4-1). The query there is a bit simplistic, but it demonstrates
the view in action and shows you the list of metrics exposed in the view. We
will use it to build a more sophisticated version of the code later in the
chapter.

Example 4-1. Using the sys.dm_exec_query_stats view
SELECT TOP 50 
    qs.creation_time AS [Cached Time] 
    ,qs.last_execution_time AS [Last Exec Time] 
    ,SUBSTRING(qt.text, (qs.statement_start_offset/2)+1, 
    (( 
        CASE qs.statement_end_offset 
            WHEN -1 THEN DATALENGTH(qt.text) 
            ELSE qs.statement_end_offset 
        END - qs.statement_start_offset)/2)+1) AS SQL 
    ,qp.query_plan AS [Query Plan] 
    ,qs.execution_count AS [Exec Cnt] 
    ,CONVERT(DECIMAL(10,5), 
        IIF(datediff(second,qs.creation_time, 
qs.last_execution_time) = 0, 
            NULL, 
            1.0 * qs.execution_count /  
                datediff(second,qs.creation_time, 
qs.last_execution_time) 
        ) 
    ) AS [Exec Per Second] 
    ,(qs.total_logical_reads + qs.total_logical_writes) /  
        qs.execution_count AS [Avg IO] 
    ,(qs.total_worker_time / qs.execution_count / 1000)  
        AS [Avg CPU(ms)] 
    ,qs.total_logical_reads AS [Total Reads] 
    ,qs.last_logical_reads AS [Last Reads] 
    ,qs.total_logical_writes AS [Total Writes] 
    ,qs.last_logical_writes AS [Last Writes] 
    ,qs.total_worker_time / 1000 AS [Total Worker Time] 
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    ,qs.last_worker_time / 1000 AS [Last Worker Time] 
    ,qs.total_elapsed_time / 1000 AS [Total Elapsed Time] 
    ,qs.last_elapsed_time / 1000 AS [Last Elapsed Time] 
    ,qs.total_rows AS [Total Rows]  
    ,qs.last_rows AS [Last Rows]  
    ,qs.total_rows / qs.execution_count AS [Avg Rows] 
    ,qs.total_physical_reads AS [Total Physical Reads] 
    ,qs.last_physical_reads AS [Last Physical Reads] 
    ,qs.total_physical_reads / qs.execution_count  
        AS [Avg Physical Reads] 
    ,qs.total_grant_kb AS [Total Grant KB] 
    ,qs.last_grant_kb AS [Last Grant KB] 
    ,(qs.total_grant_kb / qs.execution_count)  
        AS [Avg Grant KB]  
    ,qs.total_used_grant_kb AS [Total Used Grant KB] 
    ,qs.last_used_grant_kb AS [Last Used Grant KB] 
    ,(qs.total_used_grant_kb / qs.execution_count)  
        AS [Avg Used Grant KB]  
    ,qs.total_ideal_grant_kb AS [Total Ideal Grant KB] 
    ,qs.last_ideal_grant_kb AS [Last Ideal Grant KB] 
    ,(qs.total_ideal_grant_kb / qs.execution_count)  
        AS [Avg Ideal Grant KB]  
    ,qs.total_columnstore_segment_reads 
        AS [Total CSI Segments Read] 
    ,qs.last_columnstore_segment_reads  
        AS [Last CSI Segments Read] 
    ,(qs.total_columnstore_segment_reads / qs.execution_count) 
        AS [AVG CSI Segments Read] 
    ,qs.max_dop AS [Max DOP] 
    ,qs.total_spills AS [Total Spills] 
    ,qs.last_spills AS [Last Spills] 
    ,(qs.total_spills / qs.execution_count) AS [Avg Spills] 
FROM  
    sys.dm_exec_query_stats qs WITH (NOLOCK) 
        CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) qt 
        CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp 
ORDER BY 
    [Avg IO] DESC 
OPTION (RECOMPILE, MAXDOP 1);

You will likely sort data differently based on your tuning goals: by I/O when
you need to reduce disk load; by CPU on CPU-bound systems, and so on.

Figure 4-1 shows a partial output of the query from one of the servers. As
you can see, it is very easy to choose queries to optimize based on frequency
of query executions and resource consumption data in the output.
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Figure 4-1. Fig 4-1 Partial output from sys.dm_exec_query_stats view
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The execution plans you get in the output do not include actual execution
metrics. In this respect, they are similar to estimated execution plans. You’ll
need to take this into consideration during optimization (we’ll talk more
about that in chapter 5).

There are several other important limitations to remember.

First and foremost, you won’t see any data for the queries that do not have
execution plans cached. You may miss some infrequently executed queries
with plans evicted from the cache. Usually, this is not a problem –
infrequently executed queries rarely need to be optimized at the beginning
of tuning.

There is another possibility, however. SQL Server won’t cache execution
plans if you are using statement-level recompile or executing stored
procedures with a RECOMPILE clause. You need to capture those queries
using Query Store or Extended Events, which we will discuss later in the
chapter.

The second problem is related to how long plans stay cached. This varies by
plan, which may skew the results when you sort data by total metrics. For
example, a query with lower average CPU time may show a higher total
number of executions and CPU time than a query with higher average CPU
time, depending on the time when both plans were cached.

You can look at the creation_time and last_execution_time columns, which
show the last time when plans were cached and executed, respectively. I
usually look at the data sorted based on both total and average metrics,
taking the frequency of executions into consideration.

The final problem is more complicated: it is possible to get multiple results
for the same or similar queries. This can happen with ad-hoc workloads,
with clients that have different SET settings in their sessions, when users run
the same queries with slightly different formatting, or in many other cases.

Fortunately, you can address that problem by using two columns,
query_hash and query_plan_hash, both exposed in the
sys.dm_exec_query_stats view. The same values in those columns would
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indicate similar queries and execution plans. You can use those columns to
aggregate data.

WARNING
The DBCC FREEPROCCACHE statement clears the plan cache to reduce the size of the
output in the demo. Do not run it on production servers!

Let me demonstrate with a simple example. Listing 4-2 runs three queries
and then examines the content of the plan cache. The first two are the same
—they just have different formatting. The third one is different.

Example 4-2. Query_hash and query_plan_hash in action
DBCC FREEPROCCACHE -- Do not run in production! 
GO 
SELECT /*V1*/ TOP 1 object_id FROM sys.objects WHERE object_id = 1; 
GO 
SELECT /*V2*/ TOP 1 object_id  
FROM sys.objects 
WHERE object_id = 1; 
GO 
SELECT COUNT(*) FROM sys.objects   
GO 
SELECT  
    qs.query_hash, qs.query_plan_hash, qs.sql_handle, 
qs.plan_handle,  
    SUBSTRING(qt.text, (qs.statement_start_offset/2)+1, 
    (( 
        CASE qs.statement_end_offset 
            WHEN -1 THEN DATALENGTH(qt.text) 
            ELSE qs.statement_end_offset 
        END - qs.statement_start_offset)/2)+1 
    ) as SQL 
FROM  
    sys.dm_exec_query_stats qs  
        CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) qt 
ORDER BY query_hash 
OPTION (MAXDOP 1, RECOMPILE);

You can see the results in Figure 4-2. There are three execution plans in the
output. The last two rows have the same query_hash and query_plan_hash
and different sql_handle and plan_handle values.
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Figure 4-2. Fig, 4-2. Multiple plans with the same query_hash and query_plan_hash

Listing 4-3 provides a more sophisticated version of the script from Listing
4-1 by aggregating statistics from similar queries. The statement and
execution plans are picked up randomly from the first query in each group,
so factor that into your analysis.

Example 4-3. Using the sys.dm_exec_query_stats view with query_hash
aggregation
;WITH Data 
AS 
( 
    SELECT TOP 50 
        qs.query_hash 
        ,COUNT(*) as [Plan Count] 
        ,MIN(qs.creation_time) AS [Cached Time] 
        ,MAX(qs.last_execution_time) AS [Last Exec Time] 
        ,SUM(qs.execution_count) AS [Exec Cnt] 
        ,SUM(qs.total_logical_reads) AS [Total Reads] 
        ,SUM(qs.total_logical_writes) AS [Total Writes] 
        ,SUM(qs.total_worker_time / 1000) AS [Total Worker Time] 
        ,SUM(qs.total_elapsed_time / 1000) AS [Total Elapsed Time] 
        ,SUM(qs.total_rows) AS [Total Rows]  
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        ,SUM(qs.total_physical_reads) AS [Total Physical Reads] 
        ,SUM(qs.total_grant_kb) AS [Total Grant KB] 
        ,SUM(qs.total_used_grant_kb) AS [Total Used Grant KB] 
        ,SUM(qs.total_ideal_grant_kb) AS [Total Ideal Grant KB] 
        ,SUM(qs.total_columnstore_segment_reads) 
            AS [Total CSI Segments Read] 
        ,MAX(qs.max_dop) AS [Max DOP] 
        ,SUM(qs.total_spills) AS [Total Spills] 
    FROM  
        sys.dm_exec_query_stats qs WITH (NOLOCK) 
    GROUP BY 
        qs.query_hash 
    ORDER BY 
        SUM((qs.total_logical_reads + qs.total_logical_writes) / 
            qs.execution_count) DESC 
) 
SELECT  
    d.[Cached Time] 
    ,d.[Last Exec Time] 
    ,d.[Plan Count] 
    ,sql_plan.SQL 
    ,sql_plan.[Query Plan] 
    ,d.[Exec Cnt] 
    ,CONVERT(DECIMAL(10,5), 
        IIF(datediff(second,d.[Cached Time], d.[Last Exec Time]) = 
0, 
            NULL, 
            1.0 * d.[Exec Cnt] /  
                datediff(second,d.[Cached Time], d.[Last Exec Time]) 
        ) 
    ) AS [Exec Per Second] 
    ,(d.[Total Reads] + d.[Total Writes]) / d.[Exec Cnt] AS [Avg IO] 
    ,(d.[Total Worker Time] / d.[Exec Cnt] / 1000) AS [Avg CPU(ms)] 
    ,d.[Total Reads] 
    ,d.[Total Writes] 
    ,d.[Total Worker Time] 
    ,d.[Total Elapsed Time] 
    ,d.[Total Rows]  
    ,d.[Total Rows] / d.[Exec Cnt] AS [Avg Rows] 
    ,d.[Total Physical Reads] 
    ,d.[Total Physical Reads] / d.[Exec Cnt] AS [Avg Physical Reads] 
    ,d.[Total Grant KB] 
    ,d.[Total Grant KB] / d.[Exec Cnt] AS [Avg Grant KB]  
    ,d.[Total Used Grant KB] 
    ,d.[Total Used Grant KB] / d.[Exec Cnt] AS [Avg Used Grant KB]  
    ,d.[Total Ideal Grant KB] 
    ,d.[Total Ideal Grant KB] / d.[Exec Cnt] AS [Avg Ideal Grant KB]  
    ,d.[Total CSI Segments Read] 
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    ,d.[Total CSI Segments Read] / d.[Exec Cnt] AS [AVG CSI Segments 
Read] 
    ,d.[Max DOP] 
    ,d.[Total Spills] 
    ,d.[Total Spills] / d.[Exec Cnt] AS [Avg Spills] 
FROM  
    Data d 
        CROSS APPLY 
        ( 
            SELECT TOP 1 
                SUBSTRING(qt.text, (qs.statement_start_offset/2)+1, 
                (( 
                    CASE qs.statement_end_offset 
                        WHEN -1 THEN DATALENGTH(qt.text) 
                        ELSE qs.statement_end_offset 
                    END - qs.statement_start_offset)/2)+1 
                ) AS SQL 
                ,qp.query_plan AS [Query Plan] 
            FROM 
                sys.dm_exec_query_stats qs  
                    CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) 
qt 
                    CROSS APPLY 
sys.dm_exec_query_plan(qs.plan_handle) qp 
            WHERE 
                qs.query_hash = d.query_hash AND ISNULL(qt.text,'') 
<> '' 
        ) sql_plan 
ORDER BY 
     [Avg IO] DESC 
OPTION (RECOMPILE, MAXDOP 1);

Starting with SQL Server 2008, you can get execution statistics for stored
procedures through the sys.dm_exec_procedure_stats view. You can use the
code from Listing 4-4 to do that. As with the sys.dm_exec_query_stats view,
you can sort data by various execution metrics, depending on your
optimization strategy.

Example 4-4. Using the sys.dm_exec_procedure_stats view
SELECT TOP 50 
    DB_NAME(ps.database_id) AS [DB] 
    ,OBJECT_NAME(ps.object_id, ps.database_id) AS [Proc Name] 
    ,ps.type_desc AS [Type] 
    ,ps.cached_time AS [Cached Time] 
    ,ps.last_execution_time AS [Last Exec Time] 
    ,qp.query_plan AS [Plan] 
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    ,ps.execution_count AS [Exec Count] 
    ,CONVERT(DECIMAL(10,5), 
        IIF(datediff(second,ps.cached_time, ps.last_execution_time) 
= 0, 
            NULL, 
            1.0 * ps.execution_count /  
                datediff(second,ps.cached_time, 
ps.last_execution_time) 
        ) 
    ) AS [Exec Per Second] 
    ,(ps.total_logical_reads + ps.total_logical_writes) /  
        ps.execution_count AS [Avg IO] 
    ,(ps.total_worker_time / ps.execution_count / 1000)  
        AS [Avg CPU(ms)] 
    ,ps.total_logical_reads AS [Total Reads] 
    ,ps.last_logical_reads AS [Last Reads] 
    ,ps.total_logical_writes AS [Total Writes] 
    ,ps.last_logical_writes AS [Last Writes] 
    ,ps.total_worker_time / 1000 AS [Total Worker Time] 
    ,ps.last_worker_time / 1000 AS [Last Worker Time] 
    ,ps.total_elapsed_time / 1000 AS [Total Elapsed Time] 
    ,ps.last_elapsed_time / 1000 AS [Last Elapsed Time] 
    ,ps.total_physical_reads AS [Total Physical Reads] 
    ,ps.last_physical_reads AS [Last Physical Reads] 
    ,ps.total_physical_reads / ps.execution_count AS [Avg Physical 
Reads] 
    ,ps.total_spills AS [Total Spills] 
    ,ps.last_spills AS [Last Spills] 
    ,(ps.total_spills / ps.execution_count) AS [Avg Spills] 
FROM  
    sys.dm_exec_procedure_stats ps WITH (NOLOCK)  
        CROSS APPLY sys.dm_exec_query_plan(ps.plan_handle) qp 
ORDER BY 
     [Avg IO] DESC 
OPTION (RECOMPILE, MAXDOP 1);

Figure 4-3 shows partial output of the code.
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Figure 4-3. Fig. 4-3 Partial output of sys.dm_exec_procedure_stats view

As you can see in the output, you can get execution plans for the stored
procedures. Internally, the execution plans of stored procedures and other T-
SQL modules are just collections of each statement’s individual plan. In
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some cases—for example, when a stored procedure involves dynamic SQL
—the script will not return a plan in the output.

Listing 4-5 helps to address this. You can use it to get cached execution
plans and their statistics (for stored procedure statements that have plans
cached).

Example 4-5. Getting execution plan and statistics for stored procedure
statements
SELECT  
    qs.creation_time AS [Cached Time] 
    ,qs.last_execution_time AS [Last Exec Time] 
    ,SUBSTRING(qt.text, (qs.statement_start_offset/2)+1, 
    (( 
        CASE qs.statement_end_offset 
            WHEN -1 THEN DATALENGTH(qt.text) 
            ELSE qs.statement_end_offset 
        END - qs.statement_start_offset)/2)+1) AS SQL 
    ,qp.query_plan AS [Query Plan] 
    ,CONVERT(DECIMAL(10,5), 
        IIF(datediff(second,qs.creation_time, 
qs.last_execution_time) = 0, 
            NULL, 
            1.0 * qs.execution_count /  
                datediff(second,qs.creation_time, 
qs.last_execution_time) 
        ) 
    ) AS [Exec Per Second] 
    ,(qs.total_logical_reads + qs.total_logical_writes) /  
        qs.execution_count AS [Avg IO] 
    ,(qs.total_worker_time / qs.execution_count / 1000)  
        AS [Avg CPU(ms)] 
    ,qs.total_logical_reads AS [Total Reads] 
    ,qs.last_logical_reads AS [Last Reads] 
    ,qs.total_logical_writes AS [Total Writes] 
    ,qs.last_logical_writes AS [Last Writes] 
    ,qs.total_worker_time / 1000 AS [Total Worker Time] 
    ,qs.last_worker_time / 1000 AS [Last Worker Time] 
    ,qs.total_elapsed_time / 1000 AS [Total Elapsed Time] 
    ,qs.last_elapsed_time / 1000 AS [Last Elapsed Time] 
    ,qs.total_rows AS [Total Rows]  
    ,qs.last_rows AS [Last Rows]  
    ,qs.total_rows / qs.execution_count AS [Avg Rows] 
    ,qs.total_physical_reads AS [Total Physical Reads] 
    ,qs.last_physical_reads AS [Last Physical Reads] 
    ,qs.total_physical_reads / qs.execution_count  
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        AS [Avg Physical Reads] 
    ,qs.total_grant_kb AS [Total Grant KB] 
    ,qs.last_grant_kb AS [Last Grant KB] 
    ,(qs.total_grant_kb / qs.execution_count)  
        AS [Avg Grant KB]  
    ,qs.total_used_grant_kb AS [Total Used Grant KB] 
    ,qs.last_used_grant_kb AS [Last Used Grant KB] 
    ,(qs.total_used_grant_kb / qs.execution_count)  
        AS [Avg Used Grant KB]  
    ,qs.total_ideal_grant_kb AS [Total Ideal Grant KB] 
    ,qs.last_ideal_grant_kb AS [Last Ideal Grant KB] 
    ,(qs.total_ideal_grant_kb / qs.execution_count)  
        AS [Avg Ideal Grant KB]  
    ,qs.total_columnstore_segment_reads 
        AS [Total CSI Segments Read] 
    ,qs.last_columnstore_segment_reads  
        AS [Last CSI Segments Read] 
    ,(qs.total_columnstore_segment_reads / qs.execution_count) 
        AS [AVG CSI Segments Read] 
    ,qs.max_dop AS [Max DOP] 
    ,qs.total_spills AS [Total Spills] 
    ,qs.last_spills AS [Last Spills] 
    ,(qs.total_spills / qs.execution_count) AS [Avg Spills] 
FROM  
    sys.dm_exec_query_stats qs WITH (NOLOCK) 
        CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) qt 
        CROSS APPLY sys.dm_exec_text_query_plan 
        
(qs.plan_handle,qs.statement_start_offset,qs.statement_end_offset) 
qp 
WHERE  
    OBJECT_NAME(qt.objectid, qt.dbid) = <SP Name>        
ORDER BY  
    qs.statement_start_offset, qs.statement_end_offset 
OPTION (RECOMPILE, MAXDOP 1);

Finally, starting with SQL Server 2016, you can get execution statistics for
triggers and scalar user-defined functions, using sys.dm_exec_trigger_stats
and sys.dm_exec_function_stats, respectively. Listing 4-6 shows the code to
do that.

Example 4-6. Getting execution statistics for user-defined functions and
triggers
SELECT TOP 50 
    DB_NAME(fs.database_id) AS [DB] 
    ,OBJECT_NAME(fs.object_id, fs.database_id) AS [Function] 
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    ,fs.type_desc AS [Type] 
    ,fs.cached_time AS [Cached Time] 
    ,fs.last_execution_time AS [Last Exec Time] 
    ,qp.query_plan AS [Plan] 
    ,fs.execution_count AS [Exec Count] 
    ,CONVERT(DECIMAL(10,5), 
        IIF(datediff(second,fs.cached_time, fs.last_execution_time) 
= 0, 
            NULL, 
            1.0 * fs.execution_count /  
                datediff(second,fs.cached_time, 
fs.last_execution_time) 
        ) 
    ) AS [Exec Per Second] 
    ,(fs.total_logical_reads + fs.total_logical_writes) /  
        fs.execution_count AS [Avg IO] 
    ,(fs.total_worker_time / fs.execution_count / 1000) AS [Avg 
CPU(ms)] 
    ,fs.total_logical_reads AS [Total Reads] 
    ,fs.last_logical_reads AS [Last Reads] 
    ,fs.total_logical_writes AS [Total Writes] 
    ,fs.last_logical_writes AS [Last Writes] 
    ,fs.total_worker_time / 1000 AS [Total Worker Time] 
    ,fs.last_worker_time / 1000 AS [Last Worker Time] 
    ,fs.total_elapsed_time / 1000 AS [Total Elapsed Time] 
    ,fs.last_elapsed_time / 1000 AS [Last Elapsed Time] 
    ,fs.total_physical_reads AS [Total Physical Reads] 
    ,fs.last_physical_reads AS [Last Physical Reads] 
    ,fs.total_physical_reads / fs.execution_count AS [Avg Physical 
Reads] 
FROM  
    sys.dm_exec_function_stats fs WITH (NOLOCK)  
        CROSS APPLY sys.dm_exec_query_plan(fs.plan_handle) qp 
ORDER BY 
     [Avg IO] DESC 
OPTION (RECOMPILE, MAXDOP 1); 
SELECT TOP 50 
    DB_NAME(ts.database_id) AS [DB] 
    ,OBJECT_NAME(ts.object_id, ts.database_id) AS [Function] 
    ,ts.type_desc AS [Type] 
    ,ts.cached_time AS [Cached Time] 
    ,ts.last_execution_time AS [Last Exec Time] 
    ,qp.query_plan AS [Plan] 
    ,ts.execution_count AS [Exec Count] 
    ,CONVERT(DECIMAL(10,5), 
        IIF(datediff(second,ts.cached_time, ts.last_execution_time) 
= 0, 
            NULL, 
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            1.0 * ts.execution_count /  
                datediff(second,ts.cached_time, 
ts.last_execution_time) 
        ) 
    ) AS [Exec Per Second] 
    ,(ts.total_logical_reads + ts.total_logical_writes) /  
        ts.execution_count AS [Avg IO] 
    ,(ts.total_worker_time / ts.execution_count / 1000) AS [Avg 
CPU(ms)] 
    ,ts.total_logical_reads AS [Total Reads] 
    ,ts.last_logical_reads AS [Last Reads] 
    ,ts.total_logical_writes AS [Total Writes] 
    ,ts.last_logical_writes AS [Last Writes] 
    ,ts.total_worker_time / 1000 AS [Total Worker Time] 
    ,ts.last_worker_time / 1000 AS [Last Worker Time] 
    ,ts.total_elapsed_time / 1000 AS [Total Elapsed Time] 
    ,ts.last_elapsed_time / 1000 AS [Last Elapsed Time] 
    ,ts.total_physical_reads AS [Total Physical Reads] 
    ,ts.last_physical_reads AS [Last Physical Reads] 
    ,ts.total_physical_reads / ts.execution_count AS [Avg Physical 
Reads] 
FROM  
    sys.dm_exec_trigger_stats ts WITH (NOLOCK)  
        CROSS APPLY sys.dm_exec_query_plan(ts.plan_handle) qp 
ORDER BY 
     [Avg IO] DESC 
OPTION (RECOMPILE, MAXDOP 1);

Troubleshooting based on plan cache-based execution statistics has several
limitations, and you may miss some queries. Nevertheless, it is a great
starting point. Most importantly, the data is collected automatically and you
can access it immediately, without setting up additional monitoring tools.

SQL Traces and Extended Events
I am sure that every SQL Server engineer is aware of SQL Traces and
Extended Events. They allow you to capture various events in a system for
analysis and troubleshooting in real time. You can also use them to capture
long-running and expensive queries, including those that don’t cache
execution plans and are therefore missed by the sys.dm_exec_query_stats
view.
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I’d like to start this section with a warning, though: Do not use SQL Traces
and xEvents for this purpose unless it is absolutely necessary. Capturing
executed statements is an expensive operation that may introduce significant
performance overhead in busy systems. (You saw one such example in
Chapter 1.)

It does not matter how much data you collect. You can exclude most
statements from the output by filtering out queries with low resource
consumption. But SQL Server will still have to capture all statements to
evaluate, filter, and discard unnecessary events.

Don’t collect unnecessary information in events you are collecting or in
xEvent actions you are capturing. Some actions—for example, callstack—
are expensive and lead to a serious performance hit when enabled.

I do not want to beat a dead horse, but I have no choice: use Extended
Events instead of SQL Traces. They are lighter and introduce less overhead
in the system. Choose an in-memory ring_buffer target and allow event loss
in configuration when possible.

Table 4-1 shows several Extended and SQL Trace Events that can be used to
detect inefficient queries.
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              SQL Trace Event 
            

 
              xEvent 
            

 
              Comments 
            

 
          
  Fired when statement starts the 
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SQL:StmtStarting 
            

              
sqlserver.sql_statement_starting 
            

execution.

 
          
 
              
SQL:StmtCompleted 
            

 
              sqlserver. 
                
              
sql_statement_completed 
            

Fired when statement finishes the 
execution. 

 
          
 
              
SP:StmtStarting 
            

 
              s 
              
qlserver.sp_stateme
nt_starting 
            

Fired when SQL statement within T-SQL module (stored 
procedure, user-defined function, etc.) starts the 
execution.

 
          
SP:StmtCompleted
 

sqlserver.sp_statement_
completed
 

Fired when SQL statement within T-SQL module 
completes the execution.

 
          
 
              
RPC:Starting 
            

 
              
sqlserver.rpc_starti
ng 
            

Fired when remote procedure call (RPC) is starting. 
Those calls are parameterized SQL requests, such as calls 
of stored procedures or parameterized batches, sent from 
applications. Many client libraries will run queries via 
sp_executesql calls, which can be captured by that event.

 
          
 
              RPC:Completed 
            

 
              sqlserver.rpc_completed 
            

Fired when RPC completes.

 
          
 
              SP:Starting 
            

 
              sqlserver.module_start 
            

Fired when T-SQL module starts execution.
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SP:Complerted 
            

sqlserver.module_en
d
 

Fired when T-SQL module completes the 
execution.

 
          
 
              
Error:Attention 
            

 
              
sqlserver.attention 
            

Occurs when client terminates query execution due to 
timeout or connection loss.

 
        

Usually, when I need to capture inefficient queries, I set up an xEvents
session capturing sqlserver.rpc_completed, sqlserver.sql_completed, and
sqlserver.attention events and filtering data by execution metrics, such as
cpu_time or logical_reads. As part of the event, I capture several actions,
most notably sqlserver.sql_text and client information.

Listing 4-7 shows code to capture queries that consume more than 3,000ms
of CPU time or produce more than 10,000 logical reads or writes. This code
will work in SQL Server 2012 and above; it may require small
modifications in SQL Server 2008 due to the different way it works with the
file target.

Example 4-7. Capturing CPU- and I/O intensive queries
CREATE EVENT SESSION [Expensive Queries]  
ON SERVER 
ADD EVENT 
    sqlserver.sql_statement_completed 
    ( 
        ACTION 
        ( 
            sqlserver.client_app_name 
            ,sqlserver.client_hostname 
            ,sqlserver.database_id 
            ,sqlserver.plan_handle 
            ,sqlserver.sql_text 
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            ,sqlserver.username 
        )     
        WHERE 
        ( 
            ( 
                cpu_time >= 3000000 or -- Time in microseconds 
                logical_reads >= 10000 or 
                writes >= 10000 
            ) AND 
            sqlserver.is_system = 0  
        ) 
    ), 
ADD EVENT 
    sqlserver.rpc_completed 
    ( 
        ACTION 
        ( 
            sqlserver.client_app_name 
            ,sqlserver.client_hostname 
            ,sqlserver.database_id 
            ,sqlserver.plan_handle 
            ,sqlserver.sql_text 
            ,sqlserver.username 
        ) 
        WHERE 
        ( 
            ( 
                cpu_time >= 3000000 or 
                logical_reads >= 10000 or 
                writes >= 10000 
            ) AND 
            sqlserver.is_system = 0  
        ) 
    ) 
 ADD TARGET  
    package0.event_file 
    ( 
        SET FILENAME = 'c:\ExtEvents\Expensive Queries.xel' 
    ) 
WITH 
    ( 
        event_retention_mode=allow_single_event_loss 
        ,max_dispatch_latency=30 seconds 
    );

You can parse the captured results with the code from Listing 4-8.

Example 4-8. Parsing collected xEvent data
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;WITH TargetData(Data, File_Name, File_Offset) 
AS 
( 
  SELECT CONVERT(xml,event_data) AS Data, file_name, file_offset  
  FROM  
    sys.fn_xe_file_target_read_file 
      ('c:\extevents\Expensive Queries*.xel',NULL,NULL,NULL) 
) 
,EventInfo([Event],[Event Time],[DB],[Statement],[SQL],[User Name] 
    ,[Client],[App],[CPU Time],[Duration],[Logical Reads] 
    ,[Physical Reads],[Writes],[Rows],[PlanHandle] 
    ,File_Name,File_Offset) 
as 
( 
  SELECT 
    Data.value('/event[1]/@name','sysname') AS [Event] 
    ,Data.value('/event[1]/@timestamp','datetime') AS [Event Time] 
    ,Data.value('((/event[1]/data[@name="database_id"]/value/text())
[1])','INT')  
        AS [DB] 
    ,Data.value('((/event[1]/data[@name="statement"]/value/text())
[1])' 
        ,'nvarchar(max)') AS [Statement] 
    ,Data.value('((/event[1]/data[@name="sql_text"]/value/text())
[1])' 
        ,'nvarchar(max)') AS [SQL] 
    ,Data.value('((/event[1]/data[@name="username"]/value/text())
[1])' 
        ,'nvarchar(255)') AS [User Name] 
    
,Data.value('((/event[1]/data[@name="client_hostname"]/value/text())
[1])' 
        ,'nvarchar(255)') AS [Client] 
    
,Data.value('((/event[1]/data[@name="client_app_name"]/value/text())
[1])' 
        ,'nvarchar(255)') AS [App] 
    ,Data.value('((/event[1]/data[@name="cpu_time"]/value/text())
[1])' 
        ,'bigint') AS [CPU Time] 
    ,Data.value('((/event[1]/data[@name="duration"]/value/text())
[1])' 
        ,'bigint') AS [Duration] 
    
,Data.value('((/event[1]/data[@name="logical_reads"]/value/text())
[1])' 
        ,'int') AS [Logical Reads] 
    

www.datasense.ir



,Data.value('((/event[1]/data[@name="physical_reads"]/value/text())
[1])' 
        ,'int') AS [Physical Reads] 
    ,Data.value('((/event[1]/data[@name="writes"]/value/text())[1])' 
        ,'int') AS [Writes] 
    ,Data.value('((/event[1]/data[@name="row_count"]/value/text())
[1])' 
        ,'int') AS [Rows] 
    ,Data.value( 
        
'xs:hexBinary(((/event[1]/action[@name="plan_handle"]/value/text())
[1]))' 
            ,'varbinary(64)') AS [PlanHandle] 
    ,File_Name 
    ,File_Offset 
  FROM  
    TargetData  
) 
SELECT  
  ei.*, qp.Query_Plan 
FROM  
  EventInfo ei  
    OUTER APPLY sys.dm_exec_query_plan(ei.PlanHandle) qp 
OPTION (MAXDOP 1, RECOMPILE);

When you work with SQL Traces and xEvents, you have to deal with raw
data. You’ll need to aggregate it to determine which queries introduce the
most cumulative impact.

Again: beware of the overhead that xEvents and SQL Traces introduce in
systems. Do not create and run those sessions permanently. In many cases
you can get enough troubleshooting data by enabling the session or trace for
just a few minutes.

For more extensive examples on how to work with different xEvents targets,
see the code repository that accompanies this book. You can also read more
about Extended Events in my book Pro SQL Server Internals.

Query Store
So far in this chapter, we have discussed two approaches to detecting
inefficient queries. Both have limitations. Plan-cache-based data may miss
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some queries; SQL Traces and xEvents require you to perform complex
analysis of the output and may have significant performance overhead in
busy systems.

The Query Store, introduced in SQL Server 2016, helps to address those
limitations. You can think of it as something like the flight data recorders (or
“black boxes”) in airplane cockpits, but for SQL Server. When the Query
Store is enabled, SQL Server captures and persists runtime statistics and
execution plans of the queries in the database. It shows how the execution
plans perform and how they evolve over time. Finally, it allows you to force
specific execution plans to queries addressing parameter-sniffing issues,
which we will discuss in Chapter 6.

NOTE
The Query Store is disabled by default in the on-premises version of SQL Server. It is
enabled by default in Azure SQL Databases and Azure SQL Managed Instances.

The Query Store is fully integrated into the query processing pipeline, as
illustrated by the high-level diagram in Figure 4-4.
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Figure 4-4. Fig. 4-4. Query processing pipeline

When a query needs to be executed, SQL Server looks up the execution plan
from the plan cache. If it finds a plan, SQL Server checks if the query needs
to be recompiled (due to statistics updates or other factors), if a new forced
plan has been created, and if an old forced plan has been dropped from the
Query Store.

During the compilation, SQL Server checks if the query has a forced plan
available. When that happens, the query essentially gets compiled with the

www.datasense.ir



forced plan, much like when the USE PLAN hint is used. If the resulting
plan is valid, it is stored in the plan cache for reuse.

If the forced plan is no longer valid (for example, when a user drops an
index referenced in the forced plan), SQL Server does not fail the query.
Instead, it compiles the query again without the forced plan and without
caching it afterwards. The Query Store, on the other hand, persists both
plans, marking the forced plan as invalid. All of that happens without
affecting the applications.

Despite its tight integration with the query processing pipeline and various
internal optimizations, Query Store still adds overhead to the system. Just
how much overhead depends on two main factors: the number of
compilations and the data collection settings.

The more compilations SQL Server performs, the more load the Query Store
must handle. In particular, the Query Store may not work very well in
systems that have a very heavy, ad-hoc, non-parameterized workload.

Query Store’s configurations allow you to specify if you want to capture all
queries or just expensive ones, along with aggregation intervals and data
retention settings. If you collect more data and/or use smaller aggregation
intervals, you’ll have more overhead.

The overhead introduced by the Query Store is usually relatively small.
However, it may be significant in some cases. For example, I’ve been using
the Query Store to troubleshoot the performance of one process that consists
of a very large number of small ad-hoc queries. I captured all queries in the
system using QUERY_CAPTURE_MODE=ALL mode, collecting almost
10GB of data in the Query Store. The process took 8 hours to complete with
the Query Store enabled, comparing to 2.5 hours without it.

Nevertheless, I suggest enabling Query Store if your system can handle the
overhead. Some SQL Server features, such as Intelligent Query Processing,
rely on Query Store data and will benefit from it.
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NOTE
Monitor QDS* waits when you enable Query Store. Excessive QDS* waits may be a
sign of higher Query Store overhead in the system. Ignore
QDS_PERSIST_TASK_MAIN_LOOP_SLEEP and QDS_ASYNC_QUEUE waits –
they are benign.

You can work with the Query Store in two ways – through the graphics UI
in SSMS or by querying data management views directly. Let’s look at the
UI first.

Query Store SSMS Reports
After you enable the Query Store in the database, you’ll see a Query Store
folder in the Object Explorer (Figure 4-5). The number of reports in the
folder will depend on the versions of SQL Server and SSMS in your system.
The rest of this section will walk you through the seven reports shown in
Figure 4-5.
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Figure 4-5. Fig. 4-5. Query Store reports in SSMS

Regressed Queries
This report, shown in Figure 4-6, shows queries whose performance has
regressed overtime. You can configure the time frame and regression criteria
(such as disk operations, CPU consumption, and number of executions) for
analysis.
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Figure 4-6. Fig 4-6. Regressed Queries report

Choose the query in the graph on the top left. The top right portion of the
report illustrates collected execution plans for the selected query. You can
click on the dots, which represent different execution plans, and see the
plans at the bottom. You can also compare different execution plans.

The Force Plan button allows you to force a selected plan for the query. It
calls the sys.sp_query_store_force_plan stored procedure internally.
Similarly, the Unforce Plan button removes a forced plan by calling the
sys.sp_query_store_unforce_plan stored procedure.

The Regressed Queries report is a great tool for troubleshooting issues
related to parameter sniffing, which we will discuss in Chapter 6, and fixing
them quickly by forcing specific execution plans.

Top Resource Consuming Queries
This report (Figure 4-7) allows you to detect the most resource-intensive
queries in the system. While it works similarly to the data provided by
sys.dm_exec_query_stats view, it does not depend on the plan cache. You
can customize the metrics used for data sorting and the time interval.
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Figure 4-7. Fig. 4-7. Top Resource Consuming Queries report

Overall Resource Consumption
This report shows you the workload’s statistics and resource usage over the
time intervals you specify. It will allow you to detect and analyze spikes in
resource usage and drill down to the queries that introduce such spikes.
Figure 4-8 shows the output of the report.
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Figure 4-8. Fig. 4-8. Overall Resource Consumption report

Queries With High Variation
This report allows you pinpoint queries with high performance variation.
You can use it to detect anomalies in the workload, along with possible
performance regressions. (For the sake of space, I’ll skip the screenshots
here.)
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Queries With Forced Plan
This report shows you the queries that have an execution plan forced in the
system.

Query Wait Statistics
This report allows you to detect queries with high waits. The data is grouped
by several categories (such as CPU, disk, and blocking), depending on wait
type. You can see details on wait mapping in the Microsoft Documentation.

Tracked Queries
Finally, the Tracked Queries report allows you to monitor execution plans
and statistics for individual queries. It provides similar information to the
Regressed Queries and Top Resource Consuming Queries reports, at the
scope of individual queries.

These reports will give you a large amount of data for analysis. However, in
some cases, you’ll want to use T-SQL and work with the Query Store data
directly. Let’s look at how you can accomplish that.

Working with Query Store DMVs
The Query Store data management views (DMVs) are highly normalized, as
shown in Figure 4-9. Execution statistics are tracked for each execution plan
and grouped by collection intervals, which are defined by the
INTERVAL_LENGTH_MINUTES setting.

As I’ve noted, the smaller the intervals you use, the more data will be
collected and persisted in the Query Store. The same applies to the system
workload: an excessive number of ad-hoc queries may balloon the Query
Store’s size. Keep this in mind when you configure the Query Store in your
system.
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Figure 4-9. Fig. 4-9. Query Store DMVs

You can logically separate DMVs into two categories: plan store and
runtime statistics. The former ones include the following views:

sys.query_store_query

The sys.query_store_query view provides information about queries and
their compilation statistics, and last execution time.

sys.query_store_query_text

The sys.query_store_query_text view shows information about query
text.

sys.query_context_setting

The sys.query_context_setting view contains information about context
settings associated with the query. It includes SET options, default
schema for the session, language, and other attributes. SQL Server may
generate and cache separate execution plans for the same query when
those settings are different.

sys.query_store_plan

The sys.query_store_plan view provides information about query
execution plans. The is_forced_plan column indicates whether the plan
is forced. The last_force_failure_reason tells you why a forced plan was
not applied to the query.

As you can see, each query can have multiple entries in the
sys.query_store_query and sys.query_store_plan views. This will vary based
on your session context options, recompilations, and other factors.

Three other views represent runtime statistics:

sys.query_store_runtime_stats_interval

The sys.query_store_runtime_stats_interval view contains information
about statistics collection intervals.

www.datasense.ir

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-query-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-query-text-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-query-context-settings-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-plan-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-runtime-stats-interval-transact-sql


sys.query_store_runtime_stats

The sys.query_store_runtime_stats view references the
sys.query_store_plan view and contains information about runtime
statistics for a specific plan during a particular
sys.query_store_runtime_stats_interval interval. It provides information
about execution count, CPU time and call durations, logical and physical
I/O statistics, transaction log usage, degree of parallelism, memory grant
size, and a few other useful metrics.

sys.query_store_wait_stats

Starting with SQL Server 2017, you can get information about query
waits with the sys.query_store_wait_stats view. The data is collected for
each plan and time interval and grouped by several wait categories,
including CPU, memory, and blocking.

Let’s look at a few scenarios for working with Query Store data.

Listing 4-9 provides code that returns information about the system’s 50
most I/O-intensive queries. Because the Query Store persists execution
statistics over time intervals, you’ll need to aggregate data from multiple
sys.query_store_runtime_stats rows. The output will include data for all
intervals that ended within the last 24 hours, grouped by queries and their
execution plans.

Example 4-9. Getting information about expensive queries from Query Store
SELECT TOP 50  
  q.query_id, qt.query_sql_text, qp.plan_id, qp.query_plan 
  ,SUM(rs.count_executions) AS [Execution Cnt] 
  ,CONVERT(INT,SUM(rs.count_executions *  
    (rs.avg_logical_io_reads + avg_logical_io_writes)) /  
      SUM(rs.count_executions)) AS [Avg IO] 
  ,CONVERT(INT,SUM(rs.count_executions *  
    (rs.avg_logical_io_reads + avg_logical_io_writes))) AS [Total 
IO] 
  ,CONVERT(INT,SUM(rs.count_executions * rs.avg_cpu_time) / 
    SUM(rs.count_executions)) AS [Avg CPU] 
  ,CONVERT(INT,SUM(rs.count_executions * rs.avg_cpu_time)) AS [Total 
CPU] 
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  ,CONVERT(INT,SUM(rs.count_executions * rs.avg_duration) /  
    SUM(rs.count_executions)) AS [Avg Duration] 
  ,CONVERT(INT,SUM(rs.count_executions * rs.avg_duration))  
    AS [Total Duration] 
  ,CONVERT(INT,SUM(rs.count_executions * rs.avg_physical_io_reads) /  
    SUM(rs.count_executions)) AS [Avg Physical Reads] 
  ,CONVERT(INT,SUM(rs.count_executions * rs.avg_physical_io_reads))  
    AS [Total Physical Reads] 
  ,CONVERT(INT,SUM(rs.count_executions * 
rs.avg_query_max_used_memory) /  
    SUM(rs.count_executions)) AS [Avg Memory Grant Pages] 
  ,CONVERT(INT,SUM(rs.count_executions * 
rs.avg_query_max_used_memory))  
    AS [Total Memory Grant Pages] 
  ,CONVERT(INT,SUM(rs.count_executions * rs.avg_rowcount) / 
    SUM(rs.count_executions)) AS [Avg Rows] 
  ,CONVERT(INT,SUM(rs.count_executions * rs.avg_rowcount)) AS [Total 
Rows] 
  ,CONVERT(INT,SUM(rs.count_executions * rs.avg_dop) / 
    SUM(rs.count_executions)) AS [Avg DOP] 
  ,CONVERT(INT,SUM(rs.count_executions * rs.avg_dop)) AS [Total DOP] 
FROM  
  sys.query_store_query q WITH (NOLOCK) 
    JOIN sys.query_store_plan qp WITH (NOLOCK) ON 
      q.query_id = qp.query_id 
    JOIN sys.query_store_query_text qt WITH (NOLOCK) ON 
      q.query_text_id = qt.query_text_id 
    JOIN sys.query_store_runtime_stats rs WITH (NOLOCK) ON 
      qp.plan_id = rs.plan_id  
    JOIN sys.query_store_runtime_stats_interval rsi WITH (NOLOCK) ON 
      rs.runtime_stats_interval_id = rsi.runtime_stats_interval_id 
WHERE 
  rsi.end_time >= DATEADD(DAY,-1,GETDATE()) 
GROUP BY 
  q.query_id, qt.query_sql_text, qp.plan_id, qp.query_plan 
ORDER BY  
  [Avg IO] DESC 
OPTION (MAXDOP 1, RECOMPILE);

Obviously, you can sort data by different criteria than average I/O. You can
also add predicates to the WHERE and/or HAVING clauses of the query to
narrow down the results. For example, you can filter by DOP columns if
you want to detect queries that use parallelism in an OLTP environment and
fine-tune the Cost Threshold for Parallelism setting.
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Another example is for detecting queries that balloon the plan cache. The
code in Listing 4-10 provides information about queries that generate
multiple execution plans due to different context settings. The two most
common reasons for this are sessions that use different SET options and
queries that reference objects without schema names.

Example 4-10. Queries with different context settings
SELECT  
    q.query_id, qt.query_sql_text 
    ,COUNT(DISTINCT q.context_settings_id) AS [Context Setting Cnt] 
    ,COUNT(DISTINCT qp.plan_id) AS [Plan Count] 
FROM  
    sys.query_store_query q WITH (NOLOCK) 
        JOIN sys.query_store_query_text qt WITH (NOLOCK) ON 
            q.query_text_id = qt.query_text_id 
        JOIN sys.query_store_plan qp WITH (NOLOCK) ON 
            q.query_id = qp.query_id 
GROUP BY 
    q.query_id, qt.query_sql_text 
HAVING 
    COUNT(DISTINCT q.context_settings_id) > 1 
ORDER BY  
    COUNT(DISTINCT q.context_settings_id) 
OPTION (MAXDOP 1, RECOMPILE);

Listing 4-11 shows you how to find similar queries based on query_hash
value. Usually, those queries belong to a non-parameterized ad-hoc
workload in the system. You can parameterize those queries in the code. If
that’s not possible, consider using forced parameterization, which we will
discuss in Chapter 6.

Example 4-11. Detecting queries with duplicated query_hash value
SELECT TOP 100  
    q.query_hash 
    ,COUNT(*) AS [Query Count] 
    ,AVG(rs.count_executions) AS [Avg Exec Count] 
FROM  
    sys.query_store_query q WITH (NOLOCK) 
        JOIN sys.query_store_plan qp WITH (NOLOCK) ON 
            q.query_id = qp.query_id 
        JOIN sys.query_store_runtime_stats rs WITH (NOLOCK) ON 
            qp.plan_id = rs.plan_id  
GROUP BY  
    q.query_hash 

www.datasense.ir



HAVING  
    COUNT(*) > 1 
ORDER BY  
     [Avg Exec Count] ASC, [Query Count] DESC 
OPTION(MAXDOP 1, RECOMPILE);

You can view additional examples in the book’s code repository.

As you can see, the possibilities are endless. Use the Query Store if you can
afford its overhead in your system.

Third-Party Tools
As you’ve now seen, SQL Server provides a very rich and extensive set of
tools to locate inefficient queries. Nevertheless, you may also benefit from
monitoring tools developed by other vendors. Most will provide you with a
list of most resource-intensive queries for analysis and optimization. Many
will also give you the baseline, which you can use to analyze trends and
detect regressed queries.

I am not going to discuss specific tools; instead, I want to offer you a few
tips for choosing and using these tools.

The key to using any tool is understanding it. Research how it works and
analyze its limitations and what data it may miss. For example, if a tool gets
data by polling the sys.dm_exec_requests view on schedule, it may miss a
big portion of small but frequently executed queries that run in between
polls. Alternatively, if a tool determines inefficient queries by session waits,
the results will greatly depend on your system’s workload, the amount of
data cached in the buffer pool, and many other factors.

Depending on your specific needs, these limitations might be acceptable.
Remember the Pareto principle (also known as the “80/20 rule”): you don’t
need to optimize all inefficient queries in the system. Nevertheless, you may
benefit from a holistic view and from multiple perspectives. For example, it
is very easy to cross-check a tool’s list of inefficient queries against the
plan-cache-based execution statistics for a more complete list.
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There is another important reason to understand your tool, though:
estimating the amount of overhead it could introduce. Some DMVs are very
expensive to run. For example, if a tool calls the sys.dm_exec_query_plan
function during each sys.dm_exec_requests poll, it may lead to a measurable
increase in overhead in busy systems. It is also not uncommon for tools to
create traces and xEvent sessions without your knowledge.

In the end, choose the approach that best allows you to pinpoint inefficient
queries and that works best with your system. Remember that query
optimization will help in any system.

Summary
Inefficient queries impact SQL Server’s performance and can overload the
disk subsystem. Even in systems that have enough memory to cache data in
the buffer pool, those queries burn CPU, increase blocking, and affect the
customer experience.

SQL Server keeps track of execution metrics for each cached plan and
exposes them through the sys.dm_exec_query_stats view. You can also get
execution statistics for stored procedures, triggers, and scalar user-defined
functions with sys.dm_exec_procedure_stats, sys.dm_exec_trigger_stats,
and sys.dm_exec_function_stats views, respectively.

Your plan-cache-based execution statistics will not track runtime execution
metrics in execution plans, nor will it include queries that do not have plans
cached. Make sure to factor this to your analysis and query-tuning process.

You can capture inefficient queries in real time with Extended Events and
SQL Traces. Both approaches introduce overhead, especially in busy
systems. They also provide raw data, which you’ll need to process and
aggregate for further analysis.

In SQL Server 2016 and above, you can utilize the Query Store. This is a
great tool that does not depend on the plan cache and allows you to quickly
pinpoint plan regressions. The Query Store adds some overhead; this may be
acceptable in many cases, but monitor it when you enable the feature.
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Finally, I discussed how you can use third-party monitoring tools to find
inefficient queries. Remember to research how a tool works and understand
its limitation and overhead.

In the next chapter, we will discuss a few common techniques that you can
use to optimize inefficient queries.

Troubleshooting Checklist
Get the list of inefficient queries from the sys.dm_exec_query_stats
view. Sort the data according to your troubleshooting strategy
(CPU, I/O, and so forth).

Detect the most expensive stored procedures with the
sys.dm_exec_procedure_stats view.

Consider enabling the Query Store in your system and analyzing
the data you collect. (This may or may not be feasible if you
already use external monitoring tools.)

Analyze data from third-party monitoring tools and cross-check it
with SQL Server data.

Analyze the overhead that inefficient queries introduce in the
system. Correlate queries’ resource consumption with wait statistics
and server load.

Optimize queries if you determine this is needed.
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Chapter 5. Intro to Query
Tuning

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be Chapter 5 of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

The topic of query optimization and tuning is easily worth another book.
Indeed, there are many books available already and I encourage you to read
them and master your skills. I will not try to duplicate them here; instead,
this chapter will cover some of the most important concepts you need to
understand to tune the queries.

You cannot master the process of query optimization without understanding
the internal index structure and patterns that SQL Server uses to access
data. This chapter thus begins with a high-level overview of B-Tree indexes
and seek-and-scan operations.

Next, I discuss statistics and cardinality estimations, along with ways to
read and analyze execution plans.

Finally, I cover several common issues you might encounter during the
query tuning process, offering advice on how to address them and index the
data.
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Data Storage and Access Patterns
Modern SQL Server versions support three data storage and processing
technologies. The oldest and most commonly used one is row-based
storage. With row-based storage, all table columns are combined together
into the data rows that reside on 8KB data pages. Logically, those data rows
belong to B-Tree indexes or heaps (which we’ll discuss in a moment).

Starting with SQL Server 2012, you can store some indexes or entire tables
in columnar format using column-based storage. The data in such indexes
is heavily compressed and stored on a per-column basis. This technology is
optimized and provides great performance for read-only analytical queries
that scan large amounts of data. Unfortunately, it does not scale well in an
OLTP workload.

Finally, starting with SQL Server 2014, you can use In-Memory OLTP and
store data in memory-optimized tables. The data in such tables resides
completely in memory and is great for heavy OLTP workloads.

NOTE
You can use all three technologies—row-based, column-based, and memory-optimized
tables—together, partitioning data between them. This approach is extremely useful
when you need to support heavy OLTP and analytical workloads in the same system. I
cover that architecture pattern in detail in my book Pro SQL Server Internals.

Row-based storage is the default and by far most common storage
technology in SQL Server. The CREATE TABLE and CREATE INDEX
statements will store data in a row-based format unless you specify
otherwise. It can handle moderate OLTP and analytical workloads and
introduces less database administration overhead than columnstore indexes
and In-Memory OLTP.

In this chapter, I will focus on row-based storage and queries that work with
B-Tree indexes. I will discuss troubleshooting aspects of columnstore
indexes and In-Memory OLTP in Chapters 8 and 14.
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Let’s look at how SQL Server stores data in row-based storage.

Row-Based Storage Tables
Internally, the structure of a row-based table consists of multiple elements
and internal objects, as shown in Figure 5-1.
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Figure 5-1. Internal table structure

The data in the tables is stored either completely unsorted (those tables are
called heap tables or heaps) or sorted based on the value of a clustered
index key, when such an index is defined.
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I am not going to dive deep into detail, but as a general rule, it is better to
avoid heaps and define clustered indexes on your tables. There are some
edge cases when heap tables may outperform tables with clustered indexes;
nevertheless, heaps have several shortcomings. In most cases, you’ll get
better performance when tables have clustered indexes.

In addition to a single clustered index, every table may have a set of
nonclustered indexes: separate data structures that store copies of the data
from a table sorted according to index key columns. For example, if a
column is included in two nonclustered indexes, SQL Server would store
that data three times - once in a clustered index or heap, and once in each
nonclustered index.

While SQL Server allows you to create large numbers of nonclustered
indexes, doing so is not a good idea. In addition to storage overhead, SQL
Server needs to insert, update, or delete data in each nonclustered index
during data modifications maintaining multiple copies of the data.

Internally, each index (and heap) consists of one or more partitions. You can
think of each partition as an internal data structure (index or heap) that is
independent from other partitions in the table. You can use a different
partition strategy for every index in the table; however, it is usually
beneficial to partition all indexes in the same way, aligning them with each
other.

As I mentioned above, the actual data is stored in data rows on 8KB data
pages with 8,060 bytes available to users. The data from all columns is
stored together with exception when column data does not fit on the data
page.

The data pages combine into three different categories called allocation
units.

IN_ROW_DATA allocation unit pages store the main data row objects,
which consist of internal attributes and the data from fixed-length columns
(such as int, datetime, float, etc.). The in-row part of a data row must fit on
a single data page, so it cannot exceed 8,060 bytes. The data from variable-
length columns, such as (n)varchar(max), (n)varbinary(max), xml and
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others, may also be stored in-row in the main row object when it fits into
this limit.

When variable-length data does not fit in-row, SQL Server stores it off-row
on different data pages, referencing them through in-row pointers. Variable-
length data that exceeds 8,000 bytes is stored on LOB_DATA allocation
unit data pages (LOB stands for large objects). Otherwise, the data is stored
in ROW_OVERFLOW_DATA allocation unit pages.

I’d like to repeat a well-known piece of advice here: Do not use retrieve
unnecessary columns in SELECT statements, especially with the SELECT
* pattern. This may lead to additional I/O operations to get data from off-
row pages, and may also defer usage of covered indexes, as you’ll see later
in the chapter.

Finally, SQL Server logically groups sets of eight pages into 64KB units
called extents. There are two types of extents available. Mixed extents store
data that belongs to different objects. Uniform extents store the data for the
same object. By default, when a new object is created, SQL Server stores
the first eight object pages in mixed extents. After that, all subsequent space
allocation for that object is done with uniform extents.

You can disable mixed extents allocation with server-level trace flag T1118.
In SQL Server 2016 and above, you can control it on the database level
with MIXED_PAGE_ALLOCATION database option. Turning mixed
extents off will reduce the number of modifications in the system tables
when a new table is created. In users’ databases, doing so rarely gives you
noticeable benefits; however, it may significantly improve tempdb
throughput in busy OLTP systems. You can disable mixed extents allocation
with trace flag T1118 in old versions of SQL Server (prior to 2016). From
SQL Server 2016 on, tempdb stopped using mixed extents, so you don’t
need to enable that trace flag in the system.

Next, let’s look at the structure of the indexes.

B-Tree Indexes
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Clustered and nonclustered indexes have a very similar internal format
called B-Tree. Let’s create an example table called Customers, defined in
Listing 5-1. The table has the clustered index defined on CustomerId and
nonclustered index on Name columns.

Example 5-1. Customers table
CREATE TABLE dbo.Customers 
( 
    CustomerId INT NOT NULL, 
    Name NVARCHAR(64) NOT NULL, 
    Phone VARCHAR(32) NULL,  
    /* Other Columns */  
); 
CREATE UNIQUE CLUSTERED INDEX IDX_Customers_CustomerId 
ON dbo.Customers(CustomerId); 
CREATE NONCLUSTERED INDEX IDX_Customers_Name 
ON dbo.Customers(Name);
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CONSTRAINTS VERSUS INDEXES
As you may have noticed, I defined the clustered index on the table
instead of creating the primary key constraint. I did this on purpose. I
always consider constraints to be the part of a logical database design,
which defines entities and their key attributes. Indexes, on the other
hand, belong to the physical database design and physical data
structures of the database.

By default, SQL Server creates unique clustered indexes for primary
key constraints. However, you can—and in many cases should—mark
primary keys as nonclustered, which will make them unique
nonclustered indexes.

With the exception of a few SQL Server features that require you to
define primary keys, the choice between constraints and indexes is a
matter of personal preference. Primary and unique constraints are
implemented as indexes internally and behave the same. During
performance tuning, you’ll work with indexes, so I am not going to
reference constraints in this book. Their absence from the discussion
does not mean that you should not use constraints in your databases.

The logical structure of the clustered index is shown in Figure 5-2.
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Figure 5-2. B-Tree index

The bottom level of the index is called the leaf level. It stores the data
sorted according to the index key value. If it is a clustered index, the leaf
level stores all data from the table sorted based on the clustered key. To be
exact, the leaf level includes IN_ROW data only, which may reference off-
row column data on the other pages.

If all data in the index fits into a single data page, the index will consist of
that single leaf page. Otherwise, SQL Server will start to build intermediate
levels of the index. Each row on an intermediate level page references the
page from the level below and contains the minimal value of the key in the
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referenced page, as well as its physical address (FileId:PageId) in the
database. The only exception is the very first row, which stores NULL
instead of the minimal value of the key.

SQL Server continues to build intermediate levels until it ends with a level
with a single page. This level is called the root level; it is the entry point to
the index.

The pages on each level of the index are linked into the double-linked list.
Each page knows the previous and the next page in the index. This allows
SQL Server to scan the indexes forward and backward. (Keep in mind,
however, that the backward scan may be less efficient, since SQL Server
does not use parallelism during that operation.)

SQL Server can access data in the index either through index scan or index
seek. With scans, there are two ways SQL Server can do that.

The first is an allocation order scan. SQL Server tracks the extents that
belong to each index in the database through system pages called Index
Allocation Maps (IAM). It reads the data pages from the index in random
order according to index allocation data. This method, however, could
introduce data consistency problems and is rarely used.

The second, more common method is called an ordered scan. Let’s assume
that you want to run the SELECT Name FROM dbo.Customers query. All
data rows reside on the leaf level of the index and SQL Server can scan it
and return the rows to the client.

SQL Server starts with the root page of the index and reads the first row
from there. That row references the intermediate page with the minimum
key value from the table. SQL Server reads that page and repeats the
process until it finds the first page on the leaf level. Then SQL Server starts
to read rows one by one, moving through the linked list of the pages until
all rows have been read (Figure 5-3).
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Figure 5-3. Index scan

Obviously, in real life, it may become more complicated. In some cases, a
query may simultaneously scan multiple parts of the index with parallel
execution plans. In others, SQL Server may combine multiple index scans
of simultaneously running queries together into the single physical index
scan. Nevertheless, when you see the Index Scan operator in the execution
plan, you can assume that this operator will access all data from the index.

There is one exception, however: when the plan has an index scan
immediately following the Top operator. In that case, the scan operator will
stop after it returns the number of rows requested by TOP and will not
access the entire table. Usually, this happens if your query does not have an
ORDER BY clause, or if the ORDER BY clause matches the index key.

Figure 5-4 shows part of the execution plan of SELECT TOP 3 Name
FROM dbo.Customers ORDER BY CustomerId query. The Number of
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Rows Read and Actual Number of Rows properties in the Index Scan
operator indicate that the scan stopped after it read three rows.

Figure 5-4. Top and Index Scan operators

Top and Index Scan operators

As you can imagine, reading all data from the large index is an expensive
operation. Fortunately, SQL Server can access subset of the data by using
the index seek operation. Say you want to run the following query: SELECT
Name FROM dbo.Customers WHERE CustomerId BETWEEN 4 AND 7.
Figure 5-5 illustrates how SQL Server might process it.
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Figure 5-5. Index seek

In order to read the range of rows from the table, SQL Server needs to find
the row with the minimum value of the key from the range, which is 4. SQL
Server starts with the root page, where the second row references a page
with a minimum key value of 350. That is greater than the key value you’re
looking for, so SQL Server reads the intermediate-level data page (1:170)
referenced by the first row on the root page.

Similarly, the intermediate page leads SQL Server to the first leaf-level
page (1:176). SQL Server reads that page, then it reads the rows with
CustomerId equal 4 and 5, and finally, it reads the two remaining rows from
the second page.

Technically speaking, there are two kinds of index seek operations:

Point-lookup
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The first is called a point-lookup (or, sometimes, singleton lookup)
where SQL Server seeks and returns a single row: for example, the
WHERE CustomerId = 2 predicate is point-lookup operation.

Range scan

The other type is called a range scan. It requires SQL Server to find the
lowest or highest value of the key and scan the set of rows (either
forward or backward) until it reaches the end of the scan range. The
predicate WHERE CustomerId BETWEEN 4 AND 7 leads to the range
scan. Both cases are shown as Index Seek operators in the execution
plans.

As you can guess, index seek is more efficient than index scan because SQL
Server usually processes just a subset of rows and data pages, rather than
scanning the entire index. However, the Index Seek operator in the
execution plan may be misleading and represent an inefficient range scan
that reads a large number of rows, or even the entire index. I will talk about
this condition later in the chapter.

There is a concept in relational databases called SARGable predicates,
which stands for Search Argument-able. SARGable predicates allow SQL
Server to isolate a subset of the index key to process. In a nutshell, with
SARGable predicate, SQL Server can determine a single key value or a
range of index key values to read during a predicate evaluation and utilize
Index Seek operation when the index exists.

Obviously, it is beneficial to write queries using SARGable predicates and
utilize index seek whenever possible. This is done using operators, which
include =, >, >=, <, <=, IN, BETWEEN, and LIKE (for prefix matching).
Non-SARGable operators include NOT, <>, LIKE (when not prefix
matching), and NOT IN.
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Predicates are also non-SARGable when using functions (system or non-
inlined user-defined) against the table columns. SQL Server must call the
function for every row it processes to evaluate the predicate. This prevents
you from using an index seek.

The same applies to data type conversions where SQL Server uses the
CONVERT_IMPLICIT internal function. One common example is using
the Unicode nvarchar parameter in the predicate with a varchar column.
Another case is when you have different data types in the columns that
participate in the join predicate. Both cases could lead to an index scan,
even when the predicate operator appears to be SARGable.

Composite Indexes
Indexes with multiple key columns are called composite indexes. The data
in the composite indexes is sorted per column, from left to right. Figure 5-6
shows the structure of a composite index defined on LastName and
FirstName columns in the table. The data is first sorted based on LastName
(the leftmost column), then on FirstName within each LastName value.
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Figure 5-6. Composite indexes

The SARGability of a composite index depends on the SARGability of the
predicates on the leftmost index columns, which allow SQL Server to
determine and isolate the range of the index keys to process.

Table 5-1 shows examples of SARGable and non-SARGable predicates,
using the index from Figure 5-6.
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                  LastName 
                   = ‘Clark’  
                  AND  
                  FirstName = ‘Steve’ 
                

 
                  LastName 
                   <> ‘Clark’  
                   
                  AND 
                    
                  FirstName = ‘Steve’ 
                

 
              
 
                  LastName 
                   = ‘Clark’  
                  AND  
                  FirstName <> ‘Steve’ 
                

 
                  LastName 
                   LIKE '% 
                  ar 
                  %'  
                  AND  
                  FirstName = ‘Steve’ 
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                  LastName 
                   LIKE ‘Cl%'  
                

 
            

Nonclustered Indexes
While a clustered index specifies how data rows are sorted in a table,
nonclustered indexes define a separate sorting order for a column or set of
columns, storing them as separate data structures.

Think about a book, for example. Its page numbers represent the book’s
clustered index. The term index—that’s the one labeled “Index” at the end
of the book—lists terms from the book in alphabetical order. Each term
references the numbers of each page where the term is mentioned. It is thus
a nonclustered index of the terms.

When you need to find a term in the book, you can look it up in the term
index. It is a fast and efficient operation, because terms are sorted in
alphabetical order. Next, you can quickly find the pages on which the terms
are mentioned using the page numbers specified there. Without the term
index, your only choice would to read the entire book, page by page, until
you find all references to the term.

As I have noted, clustered and nonclustered indexes use a similar B-Tree
structure. Figure 5-7 shows the structure of a nonclustered index (right) on
the Name column we created in Listing 5-1. It also shows the clustered
index (left), for reference.
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Figure 5-7. Clustered and nonclustered indexes in Customers table

The leaf level of the nonclustered index is sorted based on the value of the
index key (Name). Every row on the leaf level includes the key value and
row-id value. For tables with a clustered index, row-id represents the value
of the clustered index key of the row.

This is a very important thing to remember: nonclustered indexes do not
store information about physical row location when a table has a clustered
index defined. They store the value of the clustered index key instead. This
also means that nonclustered indexes include the data from clustered index
key columns even if you don’t explicitly add those columns to the index
definition.

Like clustered indexes, the intermediate and root levels of nonclustered
indexes store one row per page from the level they reference. That row
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consists of the physical address and the minimum value of the key from the
page. In non-unique indexes, it also stores the row-id of such a row.

Let’s look at how SQL Server uses nonclustered indexes. I’ll run the
following query: SELECT Name, Phone FROM dbo.Customers WHERE
Name = ‘Boris’. Figure 5-8 shows that process.

Figure 5-8. Nonclustered Index Usage: Part 1

Similar to the clustered index, SQL Server starts with the root page of the
nonclustered index. The key value Boris is less than Dan, so SQL Server
goes to the intermediate page referenced from the first row in the root-level
page.

The second row of the intermediate page indicates that the minimum key
value on the page is Boris, although the index had not been defined as
unique and SQL Server does not know if there are other Boris rows stored
on the first page. As a result, it goes to the first leaf page of the index and
finds the row with the key value Boris and row-id equaling 7 there.
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In our case, the nonclustered index does not store any data besides
CustomerId and Name, and SQL Server needs to traverse the clustered
index tree and obtain the data for Phone column from there. This operation
is called key lookup (RID lookup in heap tables).

In the next step shown in Figure 5-9, SQL Server comes back to the
nonclustered index and reads the second page from the leaf level. It finds
another row with the key value Boris and row-id of 93712, and it performs
key lookup again.

Figure 5-9. Nonclustered Index Usage: Part 2

As you can see from Figure 5-9, SQL Server had to perform 10 reads even
though query returned just two rows. The number of I/O operations can be
calculated based on the following formula:

(# of levels in nonclustered index) + (number of pages read from the leaf
level of nonclustered index) + (number of rows found) * (# of levels in
clustered index)
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A large number of rows found (key lookup operations) leads to a large
number of I/O operations, which makes using a nonclustered index
inefficient.

As a result, SQL Server is very conservative in choosing nonclustered
indexes when it expects that a large number of key lookup operations will
be required. It may choose to scan a clustered or another nonclustered index
instead. The threshold when SQL Server decides not to use a nonclustered
index with key lookup varies, but it is very low – often a fraction of a
percent of the total number of rows in the table.

The same applies to RID lookup operations. Nonclustered indexes in heap
tables store physical address of the row in row-id. Technically, SQL Server
can access the row in a heap though the single read operation; however, it is
still expensive. Moreover, if the new version of the row does not fit into the
old data page during an update, SQL Server will move it to another place,
referencing it through another structure called forwarding pointer, which
contains the address of the new (updated) version of the row. Nonclustered
indexes will continue to reference forwarding pointers in row-id, and the
RID lookup may lead to multiple read operations to access the row.

Index Fragmentation
SQL Server always maintains the order of the data in the index, inserting
new rows on the data pages to which they belong. If the data page does not
have enough free space, SQL Server allocates a new page and places the
row there, adjusting the pointers in the double-linked page list to maintain
logical sorting order in the index. This operation is called page split, and it
leads to index fragmentation, as you’ll see in this section.

Figure 5-10 illustrates this condition. When the original page does not have
enough space to accommodate the new row, SQL Server performs a page
split, moving about half of the data from original page to the new page and
adjusting page pointers afterward.
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Figure 5-10. Page split

Page splits can also occur during data modifications. When an update
cannot be done in place—for example, during a data row size increase—
SQL Server performs a page split and moves updated and subsequent rows
from that page to another page. It maintains the index sorting order through
the page pointers.

There are two kinds of index fragmentation – internal and external.

External fragmentation

External fragmentation means that the logical order of the pages does
not match their physical order in the data files, and/or that logically
subsequent pages are not located in the same or adjacent extents.
External fragmentation forces SQL Server to jump around while reading
the data from the disk, which makes read-ahead less efficient and
increases the number of physical reads required. The impact is higher
with magnetic drives where random I/O is less efficient than sequential
I/O.
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Internal fragmentation

Internal fragmentation, on the other hand, means that data pages in the
index have free space. As a result, the index uses more data pages to
store data, which in turn increases the number of logical reads during
query execution. In addition, SQL Server uses more memory in the
buffer pool to cache index pages.

A small degree of internal fragmentation is not always bad. It reduces page
splits during insert and update operations, when data is inserted into or
updated in different pages in the index. A large degree of internal
fragmentation, however, wastes index space and reduces the performance of
the system.

You can analyze index fragmentation in the system with
sys.dm_db_index_physical_stats view. The three most important columns
from the result set are:

avg_page_space_used_in_percent

avg_page_space_used_in_percent shows the average percentage of the
data storage space used on the page. This value shows you the internal
index fragmentation.

avg_fragmentation_in_percent

avg_fragmentation_in_percent provides you with information about
external index fragmentation. For tables with clustered indexes, it
indicates the percent of out-of-order pages when the next physical page
allocated in the index is different from the page referenced by the next-
page pointer of the current page. For heap tables, it indicates the percent
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of out-of-order extents, when extents are not residing continuously in
data files.

fragment_count

fragment_count indicates how many continuous data fragments the
index has. Every fragment constitutes the group of extents adjacent to
each other. Adjacent data increases the chances that SQL Server will
use sequential I/O and Read-Ahead while accessing the data.

The impact of index fragmentation can be offset by modern hardware, when
servers have enough memory to cache the data in the buffer pool and fast
flash-based I/O subsystems to read the data. While it is always beneficial to
reduce fragmentation in the system, you need to analyze its impact when
designing your index maintenance strategy.

To put things in perspective: If your system has low-activity hours during
nights or weekends, use them for index maintenance. However, if your
system handles thousands of transactions per second around the clock, do
the analysis and estimate the benefits and downsides of different index
maintenance strategies. Remember that index maintenance is an expensive
operation and will add overhead to the system while it’s running.

There are two index maintenance methods that reduce fragmentation: index
reorganize and index rebuild. Let’s look at each in turn.

Index reorganize

Index reorganize, often called index defragmentation, reorders leaf-level
data pages into their logical order. It also tries to compress pages,
reducing their internal fragmentation. This is an online operation that
can be interrupted at any time without losing the operation’s progress up
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to the point of interruption. You can also reorganize indexes with the
ALTER INDEX REORGANIZE command.

Index rebuild

Index rebuild (ALTER INDEX REBUILD), on the other hand, creates
another copy of the index in the table. It is an offline operation, which
will lock the table in non-Enterprise editions of SQL Server. In the
Enterprise edition it can be done online, though it will still require a
short table-level lock at the beginning and end of execution.

Microsoft documentation recommends rebuilding indexes if their
external fragmentation (avg_fragmentation_in_percent) exceeds 30%
and reorganize indexes for fragmentation between 5% and 30%. You
can use those values as a rule of thumb; however, as I mentioned, it may
be better to analyze and tune for your own use-cases.

Pay attention to the FILLFACTOR index property, which allows you to
reserve some free space during index creation or rebuild, reducing page
splits afterwards. Unless you have an ever-increasing append-only index,
you should set FILLFACTOR below 100%. I usually start with 85 or 90%
and fine-tune the values to get the least internal and external fragmentation
in the index.

Finally, in heap tables, sys.dm_db_index_physical_stats view provides the
information about forwarding pointers with the forwarded_record_count
column. Tables with a large number of forwarding pointers are inefficient
and need to be rebuilt with the ALTER TABLE REBUILD operation.
However, the better option in most cases is converting them into clustered
index tables.
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NOTE
Ola Hallengren has provided a set of scripts that have become the de facto standard for
database maintenance tasks. Consider using them in your systems.

Statistics and Cardinality Estimation
SQL Server stores information about data distribution in the index in
internal objects called statistics. By default, SQL Server creates statistics
for each index in the database and uses it during query optimization. Let’s
look what information is stored in the statistics first.

Listing 5-2 creates a table with clustered and nonclustered indexes and
populates it with some data. Finally, it provides information about the
statistics using the DBCC SHOW_STATISTICS command.

Example 5-2. Examining statistics
CREATE TABLE dbo.DBObjects 
( 
    ID INT NOT NULL IDENTITY(1,1), 
    Name SYSNAME NOT NULL, 
    CreateDate DATETIME NOT NULL 
);  
CREATE UNIQUE CLUSTERED INDEX IDX_DBObjects_ID  
ON dbo.DBObjects(ID); 
  
INSERT INTO dbo.DBObjects(Name,CreateDate) 
    SELECT name, create_date FROM sys.objects ORDER BY name; 
  
-- Creating some duplicate values 
INSERT INTO dbo.DBObjects(Name, CreateDate) 
    SELECT t1.Name, t1.CreateDate 
    FROM dbo.DBObjects t1 CROSS JOIN dbo.DBObjects t2 
    WHERE t1.ID = 5 AND t2.ID between 1 AND 20; 
  
CREATE NONCLUSTERED INDEX IDX_DBObjects_Name_CreateDate 
ON dbo.DBObjectsName, CreateDate); 
  
DBCC 
SHOW_STATISTICS('dbo.DBObjects','IDX_DBObjects_Name_CreateDate');
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Figure 5-11 shows the output of the listing (you may get different results in
your system).

Figure 5-11. Statistics

As you can see, the DBCC SHOW_STATISTICS command returns three
result sets. The first contains general metadata information about statistics,
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such as name, update date, number of rows in the index at the time when
the statistics were updated, and so on.

The second result set, called density vector, contains information about
density for the combination of key values from the statistics (index). It is
calculated based on the formula (1 / number of distinct values), and it
indicates how many rows on average every combination of key values has.
It is worth noting that although IDX_DBObjects_Name_CreateDate index
has two index keys, row-id (clustered index column)- ID- also presents in
the index and is returned in the density vector.

The last and most important result set is called the histogram. It provides
information about data distribution in the index. Each record in the
histogram, called a histogram step, includes the sample key value from the
left-most column from the statistics (index) and information about data
distribution in the interval of values from the preceding to the current
RANGE_HI_KEY value. It also includes the estimated number of rows in
the interval (RANGE_ROWS), number of rows with key value equal to
RANGE_HI_KEY (EQ_ROWS), number of distinct key values in the
interval (DISTINCT_RANGE_ROWS), and average of rows per distinct
key values (AVG_RANGE_ROWS).

SQL Server uses statistics information during query optimization estimating
the number of rows that each operator in the execution plan would process
and return to the next operator there. That process is called cardinality
estimation.

Cardinality estimation greatly affects the execution plan. SQL Server uses it
to choose the sequence of operators in the plan, indexes to access the data,
type of join operators, and many other things. The efficiency of its
execution plans greatly depends on the correctness of its cardinality
estimation, and therefore on accurate statistics in the system.

There are three things you need to remember about statistics. First, and
most important, SQL Server maintains the histogram and has information
about data distribution only for left-most column of the index. There is no
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information about data distribution for other index columns or for
combinations of index column values.

The common advice you’ll hear suggests using the most selective column
as the left-most column in the composite indexes. While following this
advice may sometimes improve the quality of cardinality estimations, don’t
follow it blindly. You need to analyze the queries, making sure that the
predicates in left-most columns are SARGable and support efficient index
seek operations.

The second important thing to remember about statistics is that the
histogram stores, at most, 200 steps, regardless of the table size and whether
the table is partitioned or not. This can affect cardinality estimations in
large tables with uneven data distribution, since each step stores
information about larger key intervals.

Finally, you need to know how SQL Server updates statistics. In databases
with a compatibility level below 130 (as of SQL Server 2016), statistics are
only updated automatically after 20 percent of the data in the index has
changed. For example, in a table with 100 million rows, you would need to
insert, delete or update index key columns in 20 million rows before an
automatic update is triggered. This means that in large tables, statistics are
rarely updated automatically and tend to become inaccurate over time.

Starting with a database compatibility level of 130, the statistics update
threshold becomes dynamic. The percentage of changes that triggers the
statistics update becomes smaller as the amount of the data in the table
grows. You can force the same behavior for databases with older
compatibility levels and in old versions of SQL Server with trace flag
T2371. This is one of the trace flags I enable in every system.

Statistics Maintenance
Accurate, up-to-date statistics improve system performance. Analyze your
statistics maintenance strategy when you perform system troubleshooting,
and validate whether it provides you with accurate information.
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You can rely on automatic statistics updates, maintain statistics manually, or
combine both approaches. Index maintenance also affects statistics
maintenance strategy, since index rebuild automatically updates statistics in
the index. Index reorg, on the other hand, does not update it.

You can control whether SQL Server creates and updates statistics
automatically at the database level with the Auto Create Statistics and Auto
Update Statistics database options. When these are enabled, SQL Server
automatically maintains statistics on all indexes except those that have
STATISTICS_NORECOMPUTE enabled (it is disabled by default).

SQL Server may use different methods to update statistics. By default, it
just samples the data from the index. This approach is lightweight, but it
does not always provide accurate results. Alternatively, you can update
statistics using the UPDATE STATISTICS WITH FULLSCAN statement,
which will read the entire index.

You can also update the statistics specifying percent or number of rows to
sample with UPDATE STATISTICS WITH SAMPLE statement.
Obviously, the more data you read, the more I/O overhead you’ll have on
large indexes.

During query compilation, SQL Server detects whether statistics are
outdated and may update them synchronously or asynchronously, based on
the selected Auto Update Statistics Asynchronously database option. With
synchronous updates, Query Optimizer defers query compilation until the
update is done. With asynchronous updates, the query is optimized using
old statistics while statistics are updated in background. You can keep your
default synchronous statistics update unless your system requires extremely
low response time from the queries.

The default automatic statistics maintenance is acceptable in many cases, as
long as the database has a compatibility level of 130 or above, or T2371 is
set. However, in some cases, you can also update statistics of the key
indexes manually and/or run statistics update with FULLSCAN after hours.

It is usually beneficial to update statistics on the filtered indexes manually.
Modifications of filtered columns do not count towards the statistics update
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threshold, which may make automatic statistics maintenance inefficient.

NOTE
Filtered indexes allow you to filter subsets of data in the table, reducing index size and
index maintenance cost. Read about them in the Microsoft documentation.

Listing 5-3 shows you how to view statistics properties, such as when
statistics were last updated and how many changes in the data have
occurred since the last update. You can use it as part of your custom
statistics maintenance in the system, if needed.

Example 5-3. Analyzing statistics properties
SELECT 
    s.stats_id AS [Stat ID] 
    ,sc.name + '.' + t.name AS [Table] 
    ,s.name AS [Statistics] 
    ,p.last_updated 
    ,p.rows 
    ,p.rows_sampled 
    ,p.modification_counter AS [Mod Count] 
FROM 
    sys.stats s JOIN sys.tables t ON  
        s.object_id = t.object_id 
    JOIN sys.schemas sc ON 
        t.schema_id = sc.schema_id 
    OUTER APPLY 
        sys.dm_db_stats_properties(t.object_id,s.stats_id) p 
ORDER BY 
    p.last_updated

NOTE
This section barely scratches the surface of statistics and their maintenance—I strongly
recommend reading the Microsoft documentation to learn more about it.

Cardinality Estimation Models
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As you already know, the quality of query optimization depends on accurate
cardinality estimations. SQL Server must correctly estimate the number of
rows in each step of query execution to generate an efficient execution plan.
Accurate statistics go a long way in improving the estimations; however,
they are just part of the picture.

During the cardinality estimation process, Query Optimizer relies on a set
of assumptions that cover, among other things:

data distribution in the tables

the impact of different operators and predicates on the size of the
output

relations between multiple predicates in a single table

correlation of the data in multiple tables during joins

These assumptions, along with cardinality estimation algorithms, define the
cardinality estimation model used during optimization.

The original (legacy) cardinality estimation model was initially developed
for SQL Server 7.0 and used exclusively until the release of SQL Server
2014. Aside from some minor improvements across versions, the model
remained conceptually the same.

In SQL Server 2014, Microsoft released a new cardinality estimation model
enabled in the databases with compatibility level of 120. That model uses
different assumptions, which lead to different cardinality estimations and
execution plans.

It is impossible to tell which model is better. Some queries behave better
with the new model; others may regress when you upgrade. You can
continue to use the legacy cardinality estimation model with new versions
of SQL Server; however, it may be beneficial to upgrade at some point.
Microsoft says it is not going to remove legacy model from SQL Server in
the future, but it won’t be enhanced, either.
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Unfortunately, that’s easier said than done, especially in large and complex
systems. Changing the model may lead to massive changes in the execution
plans, so you need to be prepared to detect and address regressions quickly.
Fortunately, Query Store can simplify the process. You can collect the data
before the change and force SQL Server to use old execution plans for those
queries that regressed under the new model. Obviously, you’ll still need to
analyze and optimize them later.

You can control the cardinality estimation model with the database
compatibility level. Keep in mind that new model may behave slightly
differently in each compatibility level, starting with 120 (SQL Server 2014).
Legacy models, on the other hand, will behave the same in each SQL
Server version. Enabling the QUERY_OPTIMIZER_HOTFIXES database
setting or setting T4199 may also affect the estimations.

In SQL Server 2014, you can control the model with database compatibility
levels or with trace flags. T2312 and T9481 force SQL Server to use new
and legacy models respectively ignoring database compatibility level. In
SQL Server 2016 and above, you can choose the model by setting the
LEGACY_CARDINALITY_ESTIMATION database option.

When you perform the SQL Server version upgrade, I recommend doing it
in phases to reduce the risk of regression. First, upgrade the server version,
keeping the old cardinality estimation model in place. Validate that
everything works as expected after the upgrade. Then you can consider
changing the model. As mentioned, use Query Store as part of that process.

As a general rule, I do not recommend switching to the new cardinality
estimation model in SQL Server 2014. I encountered several bugs in early
builds of this version, which led to more regressed queries. If you do
switch, install the latest service pack, enable T4199 and carefully test the
system.

Analyzing Your Execution Plan
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The query optimization process in SQL Server, done by the Query
Optimizer, generates a query execution plan. This plan consists of multiple
operators that access and manipulate the data, achieving results for the
query. The query tuning process, in a nutshell, requires us to analyze and
improve execution plans for the queries.

Even though every database engineer is familiar with execution plans, I’d
like to discuss several things related to query tuning. First, we need to look
how SQL Server executes operators in the plan.

Row Mode and Batch Mode Execution
SQL Server has two processing methods for queries. The default, row
mode, is traditionally used with row-based storage and B-Tree indexes. In
this mode, each operator in the execution plan processes data rows one at a
time, requesting them from child operators when needed.

Let’s look at the simple example query shown in Listing 5-4.

Example 5-4. Row mode execution: Sample query
SELECT TOP 10 c.CustomerId, c.Name, a.Street, a.City, a.State, 
a.ZipCode 
FROM 
    dbo.Customers c JOIN dbo.Addresses a ON 
        c.PrimaryAddressId = a.AddressId 
ORDER BY  
    c.Name

This query would produce the execution plan shown in Figure 5-12. SQL
Server selects all of the data from the Customers table, sorts it based on the
Name column, gets the first 10 rows, joins it with the Addresses data, and
returns it to the client.
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Figure 5-12. Row mode execution: Getting the first row

Let’s analyze how SQL Server executes a query. The Select operator, which
is the parent operator in the execution plan, calls the GetRow() method of
the Top operator. The Top operator, in turn, calls the GetRow() method of
the Nested Loop Join.

A Join operator gets the data from two different inputs. First, it calls the
GetRow() method of the Sort operator. In order to sort, SQL Server needs to
read all of the rows first. So the Sort operation calls the GetRow() method
of the Clustered Index Scan operator multiple times, accumulating the
results. The Scan operator, which is the lowest operator in the execution
plan tree, returns one row from the Customers table per call. Figure 5-12
shows just two GetRow() calls, for simplicity’s sake.

When all of the data from the Customers table has been read, the Sort
operator performs sorting and returns the first row back to the Join operator,
which calls the GetRow() method of the Clustered Index Seek operator on
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the Addresses table after that. If there is a match, the Join operator
concatenates data from both inputs and passes the resulting row back to the
Top operator, which, in turn, passes it to Select.

The Select operator returns a row to the client and requests the next row by
calling the GetRow() method of the Top operator again. The process repeats
until the first 10 rows are selected. All operators keep their state and the
Sort operator preserves the sorted data. It does not need to access the
Clustered Index Scan operator again, as shown in Figure 5-13.

Figure 5-13. Row mode execution: Getting the next row

Each operator in the execution plan has multiple properties, the names of
which may vary slightly in different versions of SSMS and in other
applications. Let’s look at the most important ones.

Actual Number of Rows and Number of Rows Read

Those two properties illustrate how many rows were returned by the
operator and how many rows were processed during execution. For
example, Index Scan operator with a predicate may process 1,000 rows,
filtering out 950 of them. In that case, the property would show 50 and
1,000 rows, respectively.
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Estimated Number of Rows and Estimated Number of Rows Read

Those two properties provide cardinality estimation data and indicate
how many rows Query Optimizer expected the operator to return and
process. The large discrepancy between estimated and actual metrics
indicates a cardinality estimation error, which could lead to a
suboptimal execution plan.

Number of Executions and Estimated Number of Executions

The Number of Executions metric indicates how many times the
operator was executed. It does not correspond to the number of
GetRow() calls but rather indicates how many times this part of the
execution plan was processed. For example, in the plan shown in
Figures 5-12 and 5-13, Clustered Index Scan in the Customers table
would be executed once, while Clustered Index Seek in the Addresses
table would be executed 10 times.

The Estimated Number of Executions metric shows the estimate used by
Query Optimizer.

Startup Predicate

In some cases, operators may have a Startup Predicate property, which
indicates the condition that needs to be met for the operator to execute.
For example, a WHERE @ProvideDetails = 1 clause may generate
Filter operator with Startup Predicate @ProvideDetails = 1. The
execution plan subtree after the Filter operator may or may not be
executed, depending on the @ProvideDetails parameter in runtime.
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Unfortunately, row mode execution and per-row processing do not scale
well with large analytical queries that process millions or even billions of
rows. To address this, SQL Server 2012 introduced another execution
model, called batch mode execution. This allows operators in the execution
plans to process rows in batches. The process is optimized for large
amounts of data and parallel execution plans.

Until SQL Server 2019, Query Optimizer did not consider batch mode
execution unless at least one of the tables in the query had a columnstore
index. This restriction was removed in SQL Server 2019, where batch mode
can be used with row-based B-Tree indexes in databases with a
compatibility level of 150. This does not mean that all execution plans will
use batch mode; however, Query Optimizer will consider batch mode
during optimization.

As with any feature that affects execution plans, batch mode can introduce
regressions in some cases. You can enable and disable it on the database
level with the BATCH_MODE_ON_ROWSTORE database option or on
the query level with the ALLOW_BATCH_MODE and
DISALLOW_BATCH_MODE query hints.

Finally, there is a trick that may enable batch mode execution on B-Tree
tables in SQL Server 2016 and 2017: You can create empty and filtered
nonclustered columnstore indexes on B-Tree tables that run large analytical
queries. For example, if the table has ID column that stores only positive
values, the following index will allow Query Optimizer to consider batch
mode during optimization: CREATE NONCLUSTERED
COLUMNSTORE INDEX NCCI ON T WHERE ID < 0.

You can see the operator’s execution mode with Actual Execution Mode
property in the execution plan. Actual Number of Batches will tell you how
many batches were processed. However, the query tuning strategy would be
the same regardless of the execution mode.

Live Query Statistics and Execution Statistics Profiling
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There are several tools that allow you to analyze execution plans. In
addition to the well-known SSMS, you can use another freeware tool from
Microsoft—Azure Data Studio. Despite the name, it works perfectly well
with on-prem instances of SQL Server and can be installed on other
operating systems besides Windows.

I consider Azure Data Studio to be targeted to developers rather than
database administrators. Nevertheless, it provides basic database
administration and tuning features and can be expanded with multiple third-
party extensions. Some extensions will even bring support of other database
platforms in addition to SQL Server.

I consider SentryOne Plan Explorer a must-have freeware tool for query
tuning. This tool focuses on execution plan analysis. I find it more
advanced and easier to use than SSMS. I suggest you download and test it if
you have not done so already.

SSMS has another very useful feature called Live Query Statistics. This
feature allows you to monitor query execution in runtime, detecting
possible inefficiencies in the execution plan.

Figure 5-14 shows an example of the Live Query Statistics window in
SSMS (screenshot is copied from Microsoft documentation). The operators
with solid lines have been completed. The dotted lines represent the tree of
the operators that are currently executing. You can also see the estimated
progress of each active operator, along with the actual and estimated
numbers of rows. All metrics are updating during query execution.
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Figure 5-14. Live Query Statistics (Source: Microsoft documentation)

Live Query Statistics is very useful when you need to debug long-running
queries. It allows you to pinpoint inefficiencies in the execution plans and
speed up further query tuning. You can enable Live Query Statistics for
queries you run in SSMS. You can also access it from the Active Expensive
Query section of the Activity Monitor window.

Live Query Statistics collects data based on query execution statistics
profiling. It uses two different methods. Standard profiling exists in all
versions of SQL Server and has historically been used to obtain the actual
execution plan for the queries. Unfortunately, this method introduces
significant overhead.
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Starting with SQL Server 2014 SP2, there is another option called
lightweight profiling. With this method, the overhead is significantly
smaller; however, it does not collect runtime CPU information.

Table 5-2 illustrates how you can enable profiling in different versions of
SQL Server. It also shows xEvents that enable profiling globally in the
system. Live Query Statistics integrates with the latest version of profiling
supported by the SQL Server instance where it runs.
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Type How to enable xEvent

 
              
Prior SQL Server 
2014 SP2

Standard SET STATISTICS 
XML
 SET STATISTICS 
PROFILE

 
                  
post_query_execution_showpla
n 
                

 
              
SQL Server 2014 SP2 – SQL 
Server 2016 RTM

Lightweight v1 Live Query 
Statistics

post_query_execution
_showplan (less 
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overhead)
 query_thread_profile

 
              
SQL Server 2016 SP1 – SQL 
Server 2017

Lightweight v2 T7412
 QUERY_PLAN_PROFI
LE query hint

 
                  
query_plan_profile 
                

 
              
SQL Server 2019 Lightweight v3 Enabled by default

 LIGHTWEIGHT_QUERY_P
ROFILING database option

 
                  
query_post_executon_pl
an_profile 
                

 
            

The overhead of standard profiling is significant. With lightweight
profiling, on the other hand, it is very low. According to Microsoft, starting
with SQL Server 2016 SP1, the overhead of continuously running
lightweight profiling is about 2 to 4%. Technically speaking, you can run an
xEvents session and collect profiling information for all queries in the
system if the server is not CPU bound. Nevertheless, be careful, and
measure the impact of this monitoring in your system.

There is another useful new function, sys.dm_exec_query_statistics_xml,
that utilizes lightweight profiling. It provides an in-flight execution plan for
the currently running request. The result looks like the snapshot of Live
Query Statistics. You can use this function together with the
sys.dm_exec_requests view, as shown in Listing 5-5.

Example 5-5. Using sys.dm_exec_query_statistics_xml
SELECT  
 er.session_id 
 ,er.request_id 
 ,DB_NAME(er.database_id) as [database] 
 ,er.start_time 
 ,CONVERT(DECIMAL(21,3),er.total_elapsed_time / 1000.) AS 
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[duration] 
 ,er.cpu_time 
 ,SUBSTRING( 
  qt.text,  
   (er.statement_start_offset / 2) + 1, 
  ((CASE er.statement_end_offset 
   WHEN -1 THEN DATALENGTH(qt.text) 
   ELSE er.statement_end_offset 
  END - er.statement_start_offset) / 2) + 1 
 ) AS [statement] 
 ,er.status 
 ,er.wait_type 
 ,er.wait_time 
 ,er.wait_resource 
 ,er.blocking_session_id 
 ,er.last_wait_type 
 ,er.reads 
 ,er.logical_reads 
 ,er.writes 
 ,er.granted_query_memory 
 ,er.dop 
 ,er.row_count 
 ,er.percent_complete 
 ,es.login_time 
 ,es.original_login_name 
 ,es.host_name 
 ,es.program_name 
 ,c.client_net_address 
 ,ib.event_info AS [buffer] 
 ,qt.text AS [sql] 
 ,p.query_plan 
FROM  
 sys.dm_exec_requests er WITH (NOLOCK) 
  OUTER APPLY sys.dm_exec_input_buffer(er.session_id, 
er.request_id) ib 
  OUTER APPLY sys.dm_exec_sql_text(er.sql_handle) qt 
  OUTER APPLY 
sys.dm_exec_query_statistics_xml(er.session_id) p 
  LEFT JOIN sys.dm_exec_connections c WITH (NOLOCK) 
ON  
   er.session_id = c.session_id  
  LEFT JOIN sys.dm_exec_sessions es WITH (NOLOCK) ON  
   er.session_id = es.session_id 
WHERE 
 er.status <> 'background' 
 AND er.session_id > 50 
ORDER BY  
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 er.cpu_time desc 
OPTION (RECOMPILE, MAXDOP 1);

Common Issues and Inefficiencies
The query optimization and tuning process may touch multiple layers in the
system. For example, with third-party applications, you might not have
access to the source code and must deal with predefined set of queries. This,
perhaps, is the most challenging case—where your optimization is limited
to creating and modifying indexes.

The situation is much better when you are able to change queries and
database code. Those changes can be time-consuming and require testing,
but they yield better results and significant performance improvements.

In some cases, you need to go beyond the database code. You might need to
change the database schema, the application architecture, and sometimes
even the technology to scale the system. While this is an extremely complex
process, it may provide you the best results long-term.

I will not go that deep in this section, however. Instead, I will cover several
common inefficiencies that can be addressed with indexing and code
changes. Just remember that your options are not as limited in real life.

Inefficient Code
With exception of black-box optimizations, where you don’t have access to
the code, you should start the tuning by reviewing and, potentially,
refactoring the queries. There are several anti-patterns and issues to detect.

Non-SARGable predicates
SARGable predicates allow SQL Server to utilize the Index Seek operator
by limiting the range of the key values to process. You need to analyze the
query detecting and removing non-SARGable predicates when possible.

One very common case that leads to non-SARGable predicates is functions.
SQL Server calls the function for every row it is processing in order to
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evaluate the predicate. This applies to both system and scalar user-defined
functions (UDFs).

NOTE
SQL Server 2019 may inline some scalar UDFs into the query statement. However,
there are many limitations that prevent inlining, so it is better to avoid them when
possible.

Table 5-3 shows several examples of how you can refactor some predicates
to make them SARGable.
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Operation Non-SARGable implementation SARGable implementation

 
              
Mathematical calculations  

                  Column - 1 = @Value 
                

 
                  Column = @Value + 1 
                

 
              

 
                  ABS(Column) = 1 
                

 
                  Column IN (-1, 1) 
                

 
              

 
              
Date manipulation  

                  CONVERT(DATETIME, 
CONVERT(VARCHAR(10),Column,121)) = @Date 
                

Column >= @Date 
AND
 Column < 
DATEADD(DAY,1,@
Date)

 
              

 
              

 
                  DATEPART(YEAR,Column) 
= @Year 
                

Column >= @Year AND
 Column < 
DATEADD(YEAR,1,@Year)
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                  DATEADD(DAY,7,Column) > 
GETDATE() 
                

Column > 
 DATEADD(DAY,-7,GETDA
TE())

 
              

 
              
Prefix search  

                  LEFT(Column,3) = ‘ABC’ 
                

 
                  Column LIKE ‘ABC%' 
                

 
              

 
              
Substring search  

                  Column LIKE 
'%ABC%' 
                

 
                  Use Full-Text Search or other 
technologies 
                

 
            

Pay attention to the data types used in the predicates. Implicit conversion
operation is, in a nutshell, a call of the system CONVERT_IMPLICIT
function, which in many cases would prevent index seek. Remember to
analyze JOIN predicates in addition to WHERE clauses. Data type
mismatches in join columns are a very common source of problems.

User-Defined Functions
I noted just now that system and non-inlined scalar UDFs may prevent SQL
Server from using the index seek operation. Moreover, they introduce
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significant performance overhead, especially in case of user-defined
functions. SQL Server calls them for every row it processes, and those calls
are similar to stored procedure calls (you can confirm this by capturing an
rpc_starting xEvent or SP:Starting trace event).

SQL Server optimizes the code in multi-statement UDFs (scalar and table-
valued) separately from the caller query. This usually leads to less efficient
execution plans. More importantly, depending on the version of SQL
Server, database compatibility level and configuration settings, SQL Server
estimates that multi-statement table-valued functions return either 1 or 100
rows. This could completely invalidate cardinality estimations and lead to
highly inefficient plans.

The latter situation is improved in SQL Server 2017 with Adaptive Query
Processing. One of its features, Interleaved Execution, defers final
compilation of the query until run-time, when SQL Server can measure the
actual number of rows returned by the function and finish optimization
using that data.

Nevertheless, it is better to avoid multi-statement functions and use inline
table-valued functions when possible. SQL Server embeds and optimizes
them together with the caller queries. Fortunately, in many cases, scalar and
multi-statement table-valued functions can be converted to inline table-
valued functions with very little effort.

Temporary Tables and Table Variables
Temporary tables and table variables are very valuable during query
optimization. You can use them to persist the intermediate results of
queries. This allows you to simplify queries, which may improve
cardinality estimations and generate more efficient execution plans.

There are two common mistakes associated with temporary tables and table
variables.

First, some people choose table variables over temporary tables because of
the common misconception that table variables are in-memory objects that
don’t use tempdb and are therefore more efficient than temporary tables.
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This is not the case. Both objects rely on tempdb. Even though table
variables are slightly more efficient than temporary tables, this efficiency
comes from an important limitation: they do not maintain statistics on
primary keys and unique constraints.

Similar to multi-statement table-valued functions, Query Optimizer
estimates that a table variable stores either 1 or 100 rows. In SQL Server
2019, you can use Adaptive Query Processing to defer compilation of the
query and allow Query Optimizer to use the actual number of rows to
generate the execution plan. You can achieve the same results in older
versions of SQL Server with a statement-level recompile and OPTION
(RECOMPILE) clause. However, SQL Server does not maintain statistics
histograms and/or information about actual data distribution in table
variables.

Temporary tables, on the other hand, behave like regular tables. They
maintain index statistics and allow SQL Server to use them during
optimization. While there are some edge cases when table variables could
be the better choice, in most cases it is safer to use temporary tables. In
many cases throughout my career, I’ve achieved great results by replacing
table variables with temporary tables, without any further code or indexing
changes.

The second common mistake is not indexing temporary tables, which
negatively affects cardinality estimations and can lead to inefficient table
scans. Treat temporary tables as regular tables and index them to support
efficient querying, especially when they store significant amounts of data.

You can use a properly indexed temporary table to persist results from
multi-statement table-valued functions. This will improve cardinality
estimations, especially in the old versions of SQL Server without Adaptive
Query Processing.

Obviously, temporary tables and table variables come with a price. There is
overhead involved in creating and populating them. When they are used
wisely, the benefits may outweigh the downsides, but they are generally not
a good choice to store millions of rows.
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Stored Procedures and ORM Frameworks
While this topic is not directly related to query tuning, it is impossible to
avoid mentioning Object Relational Mapping (ORM) frameworks. They are
extremely common nowadays and saying that all database engineers hate
them would not be exaggerating. The queries generated by ORM
frameworks are extremely complex and hard to optimize.

Unfortunately, we need to accept that those frameworks simplify
development and reduce its time and cost. In most cases, it is unrealistic and
unreasonable to insist that application developers not use them. More
importantly, in many cases, the less efficient queries generated by
frameworks are totally acceptable.

Performance-critical queries are different, though. You may not have many
of them, but there are always some that will require extensive tuning and
optimization. In those cases, autogenerated and/or ad-hoc queries are not
the best choice. It is preferable to switch to stored procedures, which
provide full flexibility and a larger set of techniques for optimization.

While this switch may require changes in the application code, in many
cases it will reduce tuning time and cost. Remember that when you are
choosing your tuning approach.

Inefficient Index Seek
As you already know, an index seek operation is usually more efficient than
an index scan. This does not mean, however, that every index seek is
efficient. SQL Server uses an index seek when query predicates allow it to
isolate the range of data rows from the index during query execution. If this
range is very large, this can reduce the efficiency of the operation.

Let’s look at a simple example: we’ll create a table and populate it with
some data. Then we’ll run two SELECT statements – with and without a
WHERE clause — as shown in Listing 5-6.

Example 5-6. Index seek inefficiency
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CREATE TABLE dbo.T1 
( 
    IndexedCol INT NOT NULL, 
    NonIndexedCol INT NOT NULL 
); 
CREATE UNIQUE CLUSTERED INDEX IDX_T1 
ON dbo.T1(IndexedCol); 
  
;WITH N1(C) AS (SELECT 0 UNION ALL SELECT 0) -- 2 ROWS 
,N2(C) AS (SELECT 0 FROM N1 AS T1 CROSS JOIN N1 AS T2) -- 4 ROWS 
,N3(C) AS (SELECT 0 FROM N2 AS T1 CROSS JOIN N2 AS T2) -- 16 ROWS 
,N4(C) AS (SELECT 0 FROM N3 AS T1 CROSS JOIN N3 AS T2) -- 256 ROWS 
,N5(C) AS (SELECT 0 FROM N4 AS T1 CROSS JOIN N4 AS T2) -- 65,536 
ROWS 
,N6(C) AS (SELECT 0 FROM N3 AS T1 CROSS JOIN N5 AS T2) -- 1,048,576 
ROWS 
,IDs(ID) AS (SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) FROM 
N6) 
INSERT INTO dbo.T1(IndexedCol, NonIndexedCol) 
    SELECT ID, ID FROM IDs; 
  
SET STATISTICS IO ON 
SELECT COUNT(*) FROM dbo.T1; 
SELECT COUNT(*) FROM dbo.T1 WHERE IndexedCol > 0;

Figure 5-15 shows the execution plans of both queries along with their I/O
statistics. All rows in the table have positive IndexedCol values, so both
queries must scan an entire index. In short, an index seek operation is
identical to an index scan.
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Figure 5-15. Inefficient index seek

It is very common to see inefficient index seeks in multi-tenant systems.
Take, for example, order fulfillment software, where data is generally
spread across a relatively small number of warehouses. It is common to see
the tenant-id (or warehouse_id, in this example) as the left-most column in
the index keys.

Queries in those systems usually process data from a single tenant, using it
as the predicate in the WHERE clause, which will rightfully lead to index
seek operations in the execution plan. But if each tenant (or warehouse)
stores very large amounts of data, you may get perfectly looking and
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inefficient execution plan even without any scans present. You’ll need to
use other predicates to make index seeks selective and improve
performance.

You can analyze the efficiency of index seeks in the execution plan by
looking at the operator’s properties. Let’s run the query shown in Listing 5-
7 against the table we created in Listing 5-6.

Example 5-7. Sample query
SELECT IndexedCol, NonIndexedCol 
FROM dbo.T1 
WHERE 
    IndexedCol BETWEEN 100 AND 150 AND NonIndexedCol % 2 = 0;

Figure 5-16 illustrates several key properties for the analysis. The
screenshot here was captured in SentryOne Plan Explorer; however, you’d
see the same data in SSMS.

Figure 5-16. Index Seek operator properties

Let’s look at the most important properties of the operator.

Seek Predicate

This property shows the predicate(s) that SQL Server uses to limit the
range of rows during the index seek. The more selective this predicate
is, the more efficient index seek will be.
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Predicate

The predicate illustrates additional filter criteria that SQL Server applies
to every row read by an Index Seek operator. It does not reduce the size
of the data the operator must process; however, it may reduce the
number of rows the operator returns in the execution plan. In our case,
the operator read 51 rows from the index and returned 26 rows to the
next operator in the execution plan.

It is always more efficient to reduce the size of the data with an efficient
seek predicate. When seek predicates are not selective enough, consider
restructuring your index in a way that allows SQL Server to use regular
predicates as seek predicates.

Actual Rows and Actual Rows Read

These two properties are called Actual Number of Rows and Number of
Rows Read in SSMS. They illustrate how many rows were returned by
the operator and how many rows were processed during execution. The
large value in Number of Rows Read indicates that index seek processed
a large amount of data and may require further investigation. The large
discrepancy between those two values shows potential index
inefficiency, with a significant portion of the data being filtered out by
the Predicate rather than the Seek Predicate of the operator.

Estimated Rows and Estimated Rows to be Read

Those two properties are called Estimated Number of Rows and
Estimated Number of Rows to be Read in SSMS. As noted, you can
compare estimated and actual metrics in the execution plan to estimate
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the quality of the cardinality estimation data. A noticeable cardinality
estimation error may indicate a wrong choice of index and/or join type
(more on that later), which you will likely want to address.

Obviously, it is much easier to analyze an execution plan when you have
the actual execution metrics available. While estimated metrics can be
useful for initial analysis, cardinality estimation errors may provide a very
wrong or incomplete picture. Do additional analysis and look at the data
distribution in the database when dealing with estimated execution plans.

Incorrect Join Type
SQL Server uses many physical join operators during query execution.
These belong to one of the three logical join types: loop, hash and merge.
Each is optimized for specific conditions, and the incorrect choice may
have a serious negative impact on the query performance. Unfortunately,
people often don’t pay attention to the join type chosen by SQL Server,
overlooking opportunities for optimization.

Let’s look at all three types in more detail.

Loop Join
A loop join (or nested loop join) is the simplest join algorithm. As with any
join type, it accepts two inputs, which are called outer and inner tables. The
algorithm for the join is very simple (Listing 5-8). Briefly, SQL Server goes
through the outer table looking up rows to join in the inner table for each
outer row.

Example 5-8. Loop join algorithm (pseudo code)
/* Inner join */ 
for each row R1 in outer table 
    find row(s) R2 in inner table 
        if R1 joins with R2 
            return join (R1, R2) 
/* Outer join */ 
for each row R1 in outer table 
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    find row(s) R2 in inner table 
        if R1 joins with R2 
            return join (R1, R2) 
        else 
            return join (R1, NULL)

The cost of the join depends on two factors. The first is the size of the outer
table. SQL Server goes through each row there, locating corresponding
rows in the inner table to join. The more data it needs to process, the less
efficient it will be.

The second factor is the efficiency of the inner table search. When the join
column(s) in the inner table are properly indexed, SQL Server can utilize
the efficient index seek operation. In that case, the cost of the inner table
search on each iteration will be relatively low. Without the index, SQL
Server might have to scan the inner table multiple times – once for each
row from the outer table. As you can guess, that is extremely inefficient.

The loop join is optimized for conditions in which one of the tables is small
and the other has an index to support an index seek operation for the join. It
is impossible to define the hard threshold after which the join becomes
inefficient. It may perform well with thousands and sometimes tens of
thousands of rows in the outer input; however, it would not scale well with
millions of rows. Nevertheless, in proper conditions, this type of join is
extremely efficient. It has very little startup cost, does not use tempdb, and
does not consume large amount of memory.

Finally, loop join is the only join type that does not require an equality
predicate. SQL Server may evaluate a join predicate between every row
from both inputs. It does not require a join predicate at all. For example, the
CROSS JOIN operator would lead to a nested loop physical join when
every row from both inputs has been joined together. Obviously, SQL
Server cannot use index seek if the join predicate is not SARGable, which
would lead to extremely inefficient operation with large inputs.

Merge Join
The merge join works with two sorted inputs. It compares two rows, one at
time, and returns their join to the client if they are equal. If they are not, it
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discards the lesser value and moves on to the next row in the input. The
algorithm for the join is shown in Listing 5-9.

Example 5-9. Inner merge join algorithm (pseudocode)
/* Prerequirements: Inputs I1 and I2 are sorted */ 
get first row R1 from input I1 
get first row R2 from input I2 
while not end of either input 
begin 
    if R1 joins with R2 
    begin 
        return join (R1, R2) 
        get next row R2 from I2 
    end 
    else if R1 < R2 
        get next row R1 from I1 
    else /* R1 > R2 */ 
        get next row R2 from I2 
end

The merge join is optimized for medium and large inputs, when both of
those inputs are sorted. This means that inputs need to be indexed on the
join predicate columns. However, in practice, SQL Server may decide to
sort inputs during query execution; the cost of the sort may thus far exceed
the cost of the merge join itself. Check if that is the case and factor the cost
of the Sort operator into your analysis.

Hash Join
A hash join is designed to handle large unsorted inputs. Its algorithm
consists of two different phases.

During the first, or build, phase, a hash join scans one of the inputs (usually
the smaller one), calculates the hash values of the join key, and places them
into the hash table. In the second, or probe, phase, it scans the second input,
and checks (probes) to see if the hash value of the join key from the second
input exists in the hash table. If so, SQL Server evaluates the join predicate
for the row from the second input and all rows from the first input that
belong to the same hash bucket. The algorithm is shown in Listing 5-10.

Example 5-10. Inner hash join algorithm (pseudocode)
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/* Build Phase */ 
for each row R1 in input I1 
begin 
    calculate hash value on R1 join key 
    insert hash value to appropriate bucket in hash table 
end 
/* Probe Phase */ 
for each row R2 in input I2 
begin 
    calculate hash value on R2 join key 
    for each row R1 in hash table bucket 
    if R1 joins with R2 
        return join (R1, R2)  
end

A hash join requires memory to store the hash table. When there is not
enough memory, the join stores some hash table buckets in tempdb. This
condition is called a spill and can greatly affect join performance, since
tempdb access is significantly slower.

Spills often happen due to incorrect memory grant estimation, which in turn
may be triggered by incorrect cardinality estimation. When this is the case,
make sure that the statistics are up to date; consider simplifying or
refactoring the query if this does not help.

Adaptive Query Processing in SQL Server 2017 introduced a new feature
called memory grant feedback, which increases or decreases memory grants
for a query based on memory usage in previous executions. In SQL Server
2017, that feature is limited to batch mode execution. Starting with SQL
Server 2019, it is also enabled in row mode execution. Read the Microsoft
documentation for more information, and consider enabling it. This may
reduce tempdb spills in the system.

Comparing Join Types
Table 5-4 summarizes the behavior of different join types and the use cases
for which they are optimized.
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Nested Loop Join Merge Join Hash Join

 
              
Best use case At least input is small; index on 

the join column(s) in another 
input

Medium to large 
inputs, sorted on index 
key

Medium to large 
inputs
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Requires sorted input No Yes No

 
              
Requires equality predicate No Yes Yes

 
              
Blocking operator No No Yes (Build phase only)

 
              
Uses memory No No Yes

 
              
Uses tempdb No No (Sort may spill to tempdb) Yes, in case of spills

 
              
Preserves order Yes (outer input) Yes No

 
            

Adaptive Query Processing in SQL Server 2017 also introduced the concept
of the adaptive join. With this join, SQL Server chooses to use either a loop
or a hash join based on the size of the inputs in runtime. Unfortunately, in
SQL Server 2017 and 2019, this works only in batch mode execution,
which, in most cases, is triggered by columnstore indexes. You need to
enable Live Query Statistics in SSMS to see adaptive join in the execution
plan.

I mentioned just now that each type of join is optimized for specific use
cases and may not perform well in other cases. Let’s look at a simple
example and compare the performance of different join types. Listing 5-11
creates another table (similar to the one in Listing 5-6) and populates it with
the same data. Both tables have two columns each and a clustered index
defined on one of the columns.
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Example 5-11. Join performance: Table creation
CREATE TABLE dbo.T2 
( 
    IndexedCol INT NOT NULL, 
    NonIndexedCol INT NOT NULL 
); 
CREATE UNIQUE CLUSTERED INDEX IDX_T2 
ON dbo.T2(IndexedCol); 
INSERT INTO dbo.T2(IndexedCol, NonIndexedCol) 
    SELECT IndexedCol, NonIndexedCol FROM dbo.T1;

Next, let’s compare the performance of different join types using the code
in Listing 5-12. Here, I am forcing different join types with join hints (more
on those later). I put the execution time of the statements in my test
environment into code comments.

Example 5-12. Join performance: Test cases
-- Loop join with index seek in inner table 
-- Elapsed time: 137ms. 
SELECT COUNT(*) 
FROM dbo.T1 INNER LOOP JOIN dbo.T2 ON   T1.IndexedCol = 
T2.IndexedCol 
WHERE  
    T1.NonIndexedCol <= 100; 
  
-- Loop join with inefficient index scan in inner table 
-- Elapsed time: 16,732ms 
SELECT COUNT(*) 
FROM dbo.T1 INNER LOOP JOIN dbo.T2 ON  
    T1.IndexedCol = T2.NonIndexedCol 
WHERE  
    T1.NonIndexedCol <= 100; 
 
-- Hash join. Slower than loop join on small inputs 
-- Elapsed time: 411ms. 
SELECT COUNT(*) 
FROM dbo.T1 INNER HASH JOIN dbo.T2 ON  
    T1.IndexedCol = T2.IndexedCol 
WHERE  
    T1.NonIndexedCol <= 100; 
 
-- Loop join with index seek in inner table with large input 
-- Elapsed time: 1,514ms 
SELECT COUNT(*) 
FROM dbo.T1 INNER LOOP JOIN dbo.T2 ON  
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    T1.IndexedCol = T2.IndexedCol; 
  
-- Hash join using indexed columns to join 
-- Faster than loop join on large input 
-- Elapsed time: 1,215ms 
SELECT COUNT(*) 
FROM dbo.T1 INNER HASH JOIN dbo.T2 ON  
    T1.IndexedCol = T2.IndexedCol; 
  
-- Hash join using non-indexed columns to join 
-- Performance does not depend on if join columns were indexed 
-- Elapsed time: 1,235ms 
SELECT COUNT(*) 
FROM dbo.T1 INNER HASH JOIN dbo.T2 ON  
    T1.IndexedCol = T2.NonIndexedCol; 
  
-- Merge join with pre-sorted inputs 
-- Elapsed time: 440ms 
SELECT COUNT(*) 
FROM dbo.T1 INNER MERGE JOIN dbo.T2 ON  
    T1.IndexedCol = T2.IndexedCol; 
 
-- Merge join without pre-sorted inputs 
-- Elapsed time: 774ms 
SELECT COUNT(*) 
FROM dbo.T1 INNER MERGE JOIN dbo.T2 ON  
    T1.IndexedCol = T2.NonIndexedCol;

Loop join is faster than hash join on the small inputs; however, hash join
becomes more efficient as size of the input grows. Merge join, on the other
hand, is great when inputs are sorted. Otherwise, it adds a Sort operator to
the execution plan. While this might work fine with small inputs, sorting
very large inputs would not work well.

As these examples illustrate, an incorrect choice of join type can reduce
query performance dramatically. In most cases, this happens due to
incorrect cardinality estimations, especially when SQL Server seriously
underestimates the size of join inputs.

With hash and merge joins, this may lead to tempdb spills and slower join
performance. However, that situation is most dangerous with the loop join,
especially when the cost of inner input processing is high. (Recall that SQL
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Server processes the inner input for each row from the outer input, so costs
add up quickly with each iteration.

You can detect that condition by comparing actual to estimated rows in the
outer input or by looking at actual versus estimated number of executions in
the first operator from inner input (see Figure 5-17). A large discrepancy
would indicate a cardinality estimation error. When a cardinality estimation
error leads to a high number of executions in the inner input, a loop join
may be the wrong choice.

Figure 5-17. Cardinality estimation error in loop join

You have several options for addressing this problem. As a first step, review
the query, looking for opportunities to refactor. Remove code patterns that
could affect cardinality estimations, like multi-statement functions and table
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variables. See if there is a possibility of better indexing, which could
improve the execution plan.

It’s worth checking if you are being affected by parameter sniffing in
parameter-sensitive plans. SQL Server sometimes caches and reuses
execution plans compiled for atypical parameter values, especially when
data is distributed very unevenly in the table. Think about multi-tenant
systems where some tenants may have very little data and others a great
deal. Execution plans generated for the former group of tenants would be
inefficient for the latter.

When this is the case, consider using statement-level recompilation with
OPTION (RECOMPILE) or disabling parameter sniffing in the database. I
will discuss those and other options in more detail in the next chapter.

You can also try updating the statistics in the tables from the query.
Unfortunately, this may not always help. Query Optimizer in SQL Server
does not always make the right assumptions when estimating cardinality in
complex queries with multiple joins.

I have mentioned query simplification, which may help to address that
problem. Consider splitting the query and persist intermediate results in the
properly indexed temporary tables. SQL Server will be able to see the data
distribution there and accurately estimate cardinality in the queries.
Obviously, remember the overhead that temporary tables may introduce and
do not use them to cache very large datasets.

As a last resort, you can force join types with query hints. This is a
dangerous method, and you need to be very careful. The hints will force
Query Optimizer to perform optimization in a specific way, which may be
inefficient in the future if the data distribution changes. If you do this,
remember it and re-evaluate periodically if hints are still required.

There are two ways to use join hints. The first is specifying a list of allowed
join types in query options. The first statement in Listing 5-13 shows how
to use this method to prevent Query Optimizer from using loop joins
anywhere in the query. The second option is specifying the type of specific
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join between the tables. The second statement in the listing forces SQL
Server to use a hash join between tables A and B.

Example 5-13. Forcing join types
SELECT A.Col1, B.Col2 
FROM  
    A JOIN B ON A.ID = B.ID  
    JOIN C ON B.CID = C.ID 
OPTION (MERGE JOIN, HASH JOIN); 
SELECT A.Col1, B.Col2 
FROM  
    A INNER HASH JOIN B ON A.ID = B.ID  
    JOIN C ON B.CID = C.ID;

Unfortunately, the second approach also forces join orders for all joins in
the query. SQL Server will always join the tables in the order they were
specified in the query without trying to reorder the joins. In Listing 5-13,
for example, table A will be always be joined with table B first using hash
join, and the result of their join will be joined with table C. This makes it
dangerous for queries with multiple joins by preventing possible join-order
optimizations. Be careful when you use them!

Excessive Key Lookups
As you already know, key and RID lookups  become extremely inefficient
on a large scale. SQL Server does not use indexes for seek operations when
it estimates that large number of key or RID lookups will be required.
However, you may still encounter excessive lookups in the execution plans.

This situation often occurs due to incorrect cardinality estimations. If SQL
Server estimates that just a handful of key lookups will be required, it might
decide to use nonclustered index seek, and the error could lead to a large
number of key lookups. That error usually happens due to cardinality
estimation model limitations or parameter sniffing (in parameter-sensitive
plans, about which you’ll learn more in the next chapter).

You can detect this issue by analyzing estimated and actual numbers of
rows in the execution plan, as shown in Figure 5-18.

1
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Figure 5-18. Incorrect cardinality estimation and key lookups

SQL Server may also decide to use key lookups, choosing between bad data
access strategies and worse ones. Running millions of key lookups is
extremely inefficient; however, it could be better than scanning a table with
billions of rows.

In many cases, you can remove key lookups with covering indexes. If all
columns required for the query are present in a nonclustered index, SQL
Server doesn’t need to access the main data row in a clustered index or
heap. By definition, it includes all columns in the nonclustered index key
along with the clustered index columns in row-id.
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SQL Server allows you to include other columns in the index using the
INCLUDE index clause. Data from these columns is stored on the leaf level
only. It is not added to the index key and does not affect the sorting order of
the index rows. Figure 5-19 illustrates the structure of an index with
included columns, defined as CREATE INDEX IDX_Customers_Name ON
dbo.Customers(Name) INCLUDE(DateOfBirth) on the table, which has
CustomerId as the clustered index column.

Figure 5-19. Index with included columns

Now, if the only columns the query references are present in the index, SQL
Server can obtain all data from the leaf level of the nonclustered index B-
Tree without performing key lookups. It can use the index regardless of
how many rows would be selected from there.
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Making nonclustered indexes covering is one of the most commonly used
query optimization techniques. You can open the properties of Key Lookup
operator in the execution plan (see Figure 5-18 above) and get a list of
columns from the operator’s output and filter predicate. Including those
columns in the nonclustered index would eliminate the need to do lookups.

Although covering indexes are a great tool for optimizing queries, they
come at a cost. Every column in the index increases its row size, as well as
the number of data pages it uses on disk and in memory. That introduces
additional overhead during index maintenance and increases the database
size. Moreover, queries need to read more pages when scanning all or part
of the index. This doesn’t necessarily introduce a noticeable performance
impact during small range scans, when reading a few extra pages is far
more efficient than key lookups, but it can degrade the performance of
queries that scan a large number of data pages or the entire index.

Covering indexes also add update overhead. By adding a column to
nonclustered indexes, you store the data in multiple places. This improves
the performance of queries that select the data. However, during updates,
SQL Server needs to change the rows in every index where updated
columns are present.

It is not a good idea to create very wide nonclustered indexes that include
majority of the columns in the table. Nor do you want to have very large
number of indexes. Both conditions will increase the size of the database
and lead to excessive update overhead, especially in OLTP environments. (I
will talk more about index analysis and consolidation in chapter 14.)

Finally, I would like to state a very important and obvious thing. While
excessive key lookups are bad for performance, having key lookups is
completely normal. Doing lookups of hundreds or even thousands of rows
may be a better option than creating large covering indexes.

Think about it from a different angle: the key lookup is basically a loop join
with efficient index seek in the inner table (clustered index). It is very fast
and efficient on a small scale.
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Remember, you don’t have eradicate all key lookups from the execution
plan. Just analyze their efficiency and take care of the inefficient ones.

Indexing the Data
Designing proper indexes is both an art and a science. You will master this
skill over time. Let me give you a few tips on how how to start.

Most queries in the system have some parameters. The most selective
SARGable predicates filter out most of the data; the columns in those
predicates are the best candidates for the index.

Let’s look at a hypothetical query that returns a list of one customer’s orders
(Listing 5-14).

Example 5-14. Selecting a list of a customer’s orders
SELECT c.CustomerName, c.CustomerNumber, o.OrderId, o.OrderDate, 
o.Amount 
FROM  
    dbo.Customers c JOIN dbo.Orders o ON 
        c.CustomerId = o.CustomerId 
WHERE  
    c.CustomerNumber = @CustNum AND 
    c.Active = 1 AND 
    o.OrderDate between @StartDate AND @EndDate AND 
    o.Fulfilled = 1;

Let’s assume that you run this query against tables that have no indexes
except clustered indexes on CustomerId and OrderId colums. The execution
plan for the query consists of two clustered index scans and a hash join
between the tables (Figure 5-20). As you can see, it is inefficient.
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Figure 5-20. Indexing example: Initial execution plan

The natural place to start is the CustomerNumber column. The data here is
likely to be unique, and the index on this column will be highly selective.
The predicate Active=1 checks the status of the customer. You can expect it
to be commonly used in the queries. It is a good idea to add the Active
column to the index as an included column.

I’d also expect CustomerName to often be selected alongside
CustomerNumber data and added to the index as another included column,
eliminating the need for a key lookup operation. Still, key lookups may be
completely acceptable on a small scale with highly selective indexes.

Figure 5-21 shows the execution plan after you create the following index:
CREATE UNIQUE INDEX IDX_Customers_CustomerNumber ON
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dbo.Customers(CustomerNumber) INCLUDE (Active, CustomerName).

Figure 5-21. Indexing example: Plan with the index on Customers table

There are three predicates with Orders table columns. Two of them—on the
CustomerId and OrderDate columns—are selective, and thus good
candidates for the index. You can define the index with either (CustomerId,
OrderDate) or (OrderDate, CustomerId) column order.

To choose, consider how data will be sorted in the index. With the first
option, (CustomerId, OrderDate), SQL Server sorts the data by CustomerId
first. Then the orders for each customer are sorted by OrderDate. With the
second option, the data will be sorted by OrderDate across all customers.

Both indexes will allow index seek in the Orders table. However, the first
index is more efficient for our query. SQL Server will be able to do a range
scan for orders that belong to this single customer for the time interval
defined by @StartDate and @EndDate. With the second index, SQL Server
would have to read all orders in that time interval for all customers, which
would force it to scan more data.
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It’s good to add the Fulfilled column to the index as an included column, to
evaluate the predicate as part of the seek operation. In this case, I’d also
include the Amount column – it is small enough and would not increase the
size of the index much.

Figure 5-22 shows the final execution plan after the following index has
been created: CREATE INDEX IDX_Orders_CustomerId_OrderDate ON
dbo.Orders(CustomerId, OrderDate) INCLUDE (Fulfilled, Amount).

Figure 5-22. Indexing example: Final execution plan

Query optimization is never boring. It constantly challenges you and helps
you to learn. I hope, this chapter gives you some tips on where to start and
encourage you to practice and learn more. After all, query tuning is the
most efficient way to improve performance of the system.

A few more words of advice: Don’t create separate indexes for each query.
Instead, analyze the workload in the system and create indexes that can be
useful in multiple queries. When you start optimization, review the least
efficient queries and identify common access patterns.
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Be careful with covering indexes. Making them very wide is not a good
idea. Again, there is nothing wrong with key lookups if they don’t introduce
a significant impact on the system.

In the next chapter, we will discuss high CPU load and options how to
reduce it.

Summary
SQL Server supports three data storage and processing technologies. Row-
based storage, which is the most common, stores the data from all columns
together in unsorted heaps or sorted B-Tree indexes.

B-Tree indexes sort data based on index keys. Clustered indexes store the
data from all table columns. Nonclustered indexes store another copy of the
data in separate physical indexes. They reference clustered indexes though
row-id, which is the clustered index key values. When data is not present in
the nonclustered index, SQL Server goes though the clustered index B-Tree
using key lookup operation. This operation is expensive at scale.

SQL Server accesses data in two ways. An index scan usually reads all
rows from the index. Index seek isolates and processes a subset of the index
rows, which is usually more efficient than an index scan. Write your queries
to allow SQL Server to utilize index seeks. You should also analyze the
efficiency of your index seeks, making sure that they don’t process large
amounts of data.

SQL Server stores information about indexes and data distribution in
statistics, which it uses to estimate how many rows each operator will need
to process in the execution plan. Accurate cardinality estimation helps SQL
Server generate efficient execution plans. Up-to-date statistics are a key
element in correct cardinality estimation.

When you analyze execution plans, pay attention to the efficiency of the
Index Seek operators, the choices of join type, and the number of key and
RID lookups. Check cardinality estimations, too: improper cardinality
estimation is one of the most common problems that lead to poor execution
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plans. Make sure that statistics are up to date, add the required indexes, and
simplify and refactor queries to address issues.

Troubleshooting Checklist
Troubleshoot the following:

Analyze statistics maintenance strategy in the system. Add a
T2371 trace flag if the system has databases with compatibility
level below 130 (SQL Server 2016).

Analyze and improve index maintenance strategies.

Make sure that statistics on filtered indexes are frequently updated.
Optionally, consider rebuilding them frequently.

Identify and optimize inefficient queries.

1  For the sake of brevity, from this point on, I will stop referring to “key and RID lookups”;
everything I say about “key lookups” applies to RID lookups as well. 
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Chapter 6. High CPU Load

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be Chapter 6 of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

My first SQL Server tuning project happened more than 20 years ago, and
I’ve been dealing with many systems ever since. Over the years, I’ve
noticed an interesting trend. Most of the systems I optimized in the past
were I/O bound. Of course there were other problems, but reducing I/O load
through query tuning and code refactoring was usually enough to get the job
done.

This started to change several years ago. While I still see non-optimized and
I/O intensive queries, their impact is masked by high-performance, low-
latency flash-based drives. Moreover, the availability of cheap hardware
allows for bigger servers that can handle the load from more users. The need
to reduce high CPU load is quite common nowadays.

In this chapter, I will talk about several common patterns that increase CPU
load and options to address it. I will start with non-optimized queries and
inefficient database code. Next, I will cover query compilation overhead,
along with plan caching, and the issues they can introduce. Finally, I will
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discuss the benefits and downsides of parallelism in systems and ways to
tune your parallelism settings.

Non-Optimized Queries and T-SQL Code
Why does your server have a high CPU load? There are several possibilities,
but I’ll start with the most obvious and common one: non-optimized queries.
It does not matter how fast the disk subsystem is. Nor does it matter whether
the servers have enough memory to cache all data in the buffer pool and
eliminate all physical I/O. Non-optimized queries will increase CPU load.

To put things in perspective: a query that scans 10 million data pages uses a
million times more CPU resources than a query that scans just 10 pages. It
does not matter that each logical read takes just a few microseconds of CPU
time: that adds up quickly when multiple users are running those queries in
parallel.

You can detect CPU-intensive queries using the techniques I discussed in
Chapter 4, such as sorting data by CPU (worker) time while choosing targets
for optimization. Optimizing those queries will decrease CPU load.

Don’t confuse CPU time with duration, though. While queries with higher
CPU time usually take longer to complete, the opposite is not true. A query
may be blocked and use little CPU but still take a long time.

NOTE
Reducing query duration will improve users’ experience, but I rarely choose
optimization targets based on this factor. Optimizing queries with high resource usage
usually reduces duration as well.

Inefficient T-SQL Code
Inefficient T-SQL code also contributes to the problem. Except for natively
compiled In-Memory OLTP modules, SQL Server interprets T-SQL code.
This leads to additional CPU overhead.
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Don’t get me wrong: I don’t want to discourage you from using stored
procedures and T-SQL code. The benefits of properly designed and
implemented T-SQL modules greatly overweight CPU overhead. But there’s
one case I need to mention specifically – row-by-row processing.

Regardless of how you implement row-by-row processing – with cursors or
with loops – it is inefficient. Imperative row-by-row execution will be
slower and more CPU-intensive than declarative set-based logic. There are
some rare cases when you absolutely have to implement row-by-row
processing; however, avoid it when possible.

Statements that perform row-by-row processing may not always appear to
be the most resource-intensive statements. You can look at plan cache-based
execution statistics for T-SQL modules with sys.dm_exec_procedure_stats,
sys.dm_exec_function_stats, and sys.dm_exec_trigger_stats views
(discussed in Chapter 4) to detect the modules with the most cumulative
resource usage. Analyze what they are doing, keeping an eye on row-by-row
logic.

Other T-SQL constructs contribute to CPU load, too: for example, JSON
and (especially) XML support are CPU-intensive. It is better to parse semi-
structured data on the client side, rather than in SQL Server. It’s also easier
and cheaper to scale application servers since you don’t need to pay the SQL
Server licensing cost.

Be aware of CLR, external languages code, and extended stored procedures
with complex logic. Avoid extensive function calls, especially with user-
defined functions. They add overhead and may lead to less efficient
execution plans when they are not inlined.

Pay attention to views usage. Depending on the database schema and
definition, views may introduce unnecessary joins, accessing tables the
queries do not need to access. This is especially common if the tables do not
have proper foreign keys defined.

Scripts for Troubleshooting High CPU Load
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I’d like to provide you with a couple of scripts that are helpful when
troubleshooting high CPU load. The first, in Listing 6-1, shows you CPU
load on the server during the last 256 minutes. The data is measured once
per minute, so it may miss short CPU load bursts that occur in between
measurements.

Example 6-1. Getting CPU Load History
DECLARE 
  @now BIGINT; 
   
SELECT @now = cpu_ticks / (cpu_ticks / ms_ticks)  
FROM sys.dm_os_sys_info WITH (NOLOCK); 
;WITH RingBufferData([timestamp], rec) 
AS 
( 
  SELECT [timestamp], CONVERT(XML, record) AS rec  
  FROM sys.dm_os_ring_buffers WITH (NOLOCK) 
  WHERE  
    ring_buffer_type = N'RING_BUFFER_SCHEDULER_MONITOR' AND 
    record LIKE N'%<SystemHealth>%' 
) 
,Data(id, SystemIdle, SQLCPU, [timestamp]) 
AS 
( 
  SELECT 
    rec.value('(./Record/@id)[1]', 'int')  
    ,rec.value 
     ('(./Record/SchedulerMonitorEvent/SystemHealth/SystemIdle)
[1]','int') 
    ,rec.value 
     
('(./Record/SchedulerMonitorEvent/SystemHealth/ProcessUtilization)
[1]','int')  
    ,[timestamp]  
  FROM RingBufferData 
) 
SELECT TOP 256  
  dateadd(MS, -1 * (@now - [timestamp]), getdate()) AS [Event Time]  
  ,SQLCPU AS [SQL Server CPU Utilization]  
  ,SystemIdle AS [System Idle] 
  ,100 - SystemIdle - SQLCPU AS [Other Processes CPU Utilization] 
FROM Data 
ORDER BY id desc 
OPTION (RECOMPILE, MAXDOP 1);
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Figure 6-1 illustrates the output of the code. Data in the [Other Processes
CPU Utilization] column shows CPU load in the system outside of SQL
Server. If that load is significant, analyze what processes are running on the
server and generating it.

Figure 6-1. Script output showing CPU load history

Listing 6-2 helps you analyze CPU load per database. This may be
beneficial when your server hosts multiple databases, and you are
considering splitting the busy ones between different servers. (Please note:
This script uses plan cache data, so the output is imprecise.)

Example 6-2. Per-database CPU Load
;WITH DBCPU 
AS 
( 
    SELECT  
        pa.DBID, DB_NAME(pa.DBID) AS [DB] 
        ,SUM(qs.total_worker_time/1000) AS [CPUTime] 
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    FROM  
        sys.dm_exec_query_stats qs WITH (NOLOCK) 
        CROSS APPLY  
        ( 
            SELECT CONVERT(INT, value) AS [DBID]  
            FROM sys.dm_exec_plan_attributes(qs.plan_handle) 
            WHERE attribute = N'dbid' 
        ) AS pa 
    GROUP BY pa.DBID 
) 
SELECT  
    [DB] 
    ,[CPUTime] AS [CPU Time (ms)] 
    ,CONVERT(decimal(5,2), 1. *[CPUTime] /  
        SUM([CPUTime]) OVER() * 100.0) AS [CPU Percent] 
FROM DBCPU 
WHERE DBID <> 32767 -- ResourceDB 
ORDER BY [CPUTime] DESC;

Figure 6-2 shows the output from a production server.

Figure 6-2. Script output showing CPU load per database

Non-Optimized Query Patterns to Watch For
In case of non-optimized queries, there are two distinct patterns that can
trigger high CPU load. I call them “the worst offenders” and “death by a
thousand cuts.” (This terminology is by no means standard – it’s just how I
like to differentiate between them.)

The worst offenders
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The “worst offenders” occur when you have one or more expensive, long-
running queries that generate heavy CPU load: think of non-optimized
queries with parallel execution plans that scan millions of rows and perform
sorting and aggregation. They can bring a server to its knees, especially if
you have several running simultaneously.

Fortunately, it is easy to detect the worst offenders in real time by querying
the sys.dm_exec_requests view and analyzing the cpu_time column. (You
can use the code from Listing 2-3 in Chapter 2 to do that.)

WARNING BOX

A word of caution: The code in Listing 2-3 filters out system processes with
a session_id below 50. In some cases, you might want to remove this filter
and analyze all sessions running on the server. Keep in mind that some
sessions may have been running since SQL Server startup and have high
cumulative cpu_time: pay attention to the request start time.

Death by a thousand cuts
With the second pattern, “death by a thousand cuts,” the load on the server is
generated by a large number of simultaneously running requests. Each
request may be relatively small and even optimized; however, the sheer
number of requests drives CPU usage and server load up.

This case is more challenging to handle. While query optimization (covered
in Chapter 5) may help, you’ll likely have to optimize a large number of
queries consuming significant time and effort. It often requires refactoring
database schemas, code, and applications on a massive scale to achieve
results.

In the end, you have to reduce the load on the server to address the problem.
Let’s talk about several other factors that can increase that load, starting
with the query compilation and plan caching processes.

Query Compilation and Plan Caching
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Every time you submit a query to the system, SQL Server needs to compile
and optimize it. This process is resource intensive, so SQL Server tries to
minimize the number of compilations by caching execution plans for later
reuse. In addition to regular client queries and batches, it caches plans of
various objects, such as stored procedures, triggers, and user-defined
functions. The memory area where these are stored is called the plan cache.

SQL Server uses different algorithms to determine which plans to remove
from the cache in case of memory pressure. For ad-hoc queries, this
selection is based on how often the plan is reused. For other types of plans,
the cost of plan generation is also factored into the decision.

SQL Server recompiles queries when it suspects that currently cached plans
are no longer valid. This may happen if the plan references objects whose
schemas have changed, or because of stale statistics. SQL Server checks to
see if the statistics are outdated when it looks up a plan from the cache, and
it recompiles the query if they are. That recompilation, in turn, triggers a
statistics update.

Plan caching and reuse can significantly reduce the number of compilations
and the CPU load, as I will demonstrate later in the chapter. However, it can
also introduce problems. Let’s look at some of the most common issues that
arise, starting with parameter sensitivity in parameter-sensitive plans. (This
is sometimes called parameter sniffing, which just describes the SQL Server
behavior that leads to that issue).

Parameter-Sensitive Plans
Except for some trivial queries, SQL Server always offers multiple options
for generating the execution plan for the query. It can use different indexes
to access data, select different join types, and choose among operators and
execution strategies.

By default, SQL Server analyzes (sniffs) parameter values at the time of
optimization and generates and caches an optimal plan for those values.
Nothing is wrong with this behavior—though it can, if your data is unevenly
distributed, lead to a cached plan that is optimal for atypical, rarely used
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parameter values but highly inefficient for queries with more common
parameters.

I’m sure we’re all experienced a situation where some queries or stored
procedures suddenly started taking much longer to complete, even though
there were no recent changes in the system. In most cases, these situations
happen when queries are recompiled after a statistics update, due to
parameter sniffing.

Let me show you an example. The script in Listing 6-3 creates a table and
populates it with 1 million rows, evenly distributed across 10 StoreId values
(a little more than 100,000 rows per StoreId), along with 10 rows with a
StoreId of 99.

Example 6-3. Parameter-sensitive plans: Table creation
CREATE TABLE dbo.Orders 
( 
    OrderId INT NOT NULL IDENTITY(1,1), 
    OrderNum VARCHAR(32) NOT NULL, 
    CustomerId UNIQUEIDENTIFIER NOT NULL, 
    Amount MONEY NOT NULL, 
    StoreId INT NOT NULL, 
    Fulfilled BIT NOT NULL 
); 
;WITH N1(C) AS (SELECT 0 UNION ALL SELECT 0) -- 2 rows 
,N2(C) AS (SELECT 0 FROM N1 AS T1 CROSS JOIN N1 AS T2) -- 4 rows 
,N3(C) AS (SELECT 0 FROM N1 AS T1 CROSS JOIN N2 AS T2) -- 16 rows 
,N4(C) AS (SELECT 0 FROM N1 AS T1 CROSS JOIN T2 CROSS JOIN N2 AS T3) 
-- 1024 rows 
,N5(C) AS (SELECT 0 FROM N1 AS T1 CROSS JOIN N4 AS T2 ) -- 1,048,576 
rows 
,IDs(ID) AS (SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) FROM 
N5) 
INSERT INTO dbo.Orders(OrderNum, CustomerId, Amount, StoreId, 
Fulfilled) 
    select  
        'Order: ' + convert(varchar(32),ID) 
        ,newid() 
        ,ID % 100 
        ,ID % 10 
        ,1 
    from IDs;  
INSERT INTO dbo.Orders(OrderNum, CustomerId, Amount, StoreId, 
Fulfilled) 
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 select top 10 OrderNum, CustomerId, Amount, 99, 0 
 from dbo.Orders 
 order by OrderId; 
CREATE UNIQUE CLUSTERED INDEX IDX_Orders_OrderId 
ON dbo.Orders(OrderId); 
CREATE NONCLUSTERED INDEX IDX_Orders_CustomerId 
ON dbo.Orders(CustomerId); 
CREATE NONCLUSTERED INDEX IDX_Orders_StoreId 
ON dbo.Orders(StoreId);

Next, let’s create a stored procedure that calculates the total sales amount for
a specific store (Listing 6-4). I’m using a stored procedure in this example;
however, parameterized queries called from client applications would
behave the same way.

Listing 6-4. Parameter-sensitive plans: Stored procedure
CREATE PROC dbo.GetTotalPerStore(@StoreId int) 
AS 
    SELECT SUM(Amount) as [Total Amount] 
    FROM dbo.Orders 
    WHERE StoreId = @StoreId;

With the current data distribution, when the stored procedure is called with
any @StoreId other than 99, the optimal execution plan involves scanning
the clustered index in the table. However, if @StoreId=99, a better
execution plan would be to use an index seek on IDX_Orders_StoreId
index, with the key lookup afterwards.

Let’s call the stored procedure twice: the first time with @StoreId=5 and the
second time with @StoreId=99, as shown in Listing 6-5.

Example 6-5. Parameter-sensitive plans: Calling the procedure (Test 1)
EXEC dbo.GetTotalPerStore @StoreId = 5; 
EXEC dbo.GetTotalPerStore @StoreId = 99;

As you can see from the execution plan in Figure 6-3, SQL Server compiles
the stored procedure, caches the plan with the first call, and reuses the plan
later. Even though this plan is less efficient for the second call with
@StoreId=99, it may be acceptable when those calls are rare, which is
expected with such a data distribution.
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Figure 6-3. Execution plans of the queries (Test 1).

Now let’s take a look at what happens if we swap those calls when the plan
is not cached (Listing 6-6). I am clearing the plan cache with the DBCC
FREEPROCCACHE command – do not run this demo on a production
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server! Note, however, that the same thing can happen when a statistics
update triggers the query to recompile.

Example 6-6. Parameter-sensitive plans: Calling the procedure (Test 2)
DBCC FREEPROCCACHE; 
EXEC dbo.GetTotalPerStore @StoreId = 99; 
EXEC dbo.GetTotalPerStore @StoreId = 5;

As you can see in Figure 6-4, SQL Server now caches the plan compiled for
the @StoreId=99 parameter value. Even though this plan is more efficient
when the stored procedure is called with this parameter, it is highly
inefficient for other @StoreId values.
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Figure 6-4. Execution plans of the queries (Test 2).

Inefficient parameter-sensitive plans often become the “worst offender”
queries that drive CPU load up. As I mentioned, you can detect those
queries with the sys.dm_exec_requests view (Listing 2-3) and recompile
them to remediate the issue.

You can force stored procedures and other T-SQL modules to recompile
with the sp_recompile stored procedure. For ad-hoc queries, you can call
DBCC FREEPROCCACHE, providing plan_handle or sql_handle as the
parameter. Finally, if you have Query Store enabled, you can force a more
efficient query execution plan there.

Obviously, it is better to address the root cause of the issue. First, see if there
are any opportunities for query tuning, which would eliminate the plans’
parameter sensitivity. We usually end up with parameter-sensitive plans
because there are no efficient plans that do not depend on parameter values.
For example, if you have the Amount column included to the
IDX_Orders_StoreId index, that index would become covering. SQL Server
can use it for all parameter values regardless of how many rows will be
read, because the Key Lookup operation will no longer be required.

If you are using SQL Server 2017 or above, you can benefit from automatic
plan correction, which is part of the automatic tuning technology. When this
feature is enabled, SQL Server can detect parameter sniffing issues and
automatically force the last known good plan that was used before
regression occurred.

Automatic plan correction relies on the Force Plan feature of Query Store
and, as you can guess, requires Query Store to be enabled in the database.
Moreover, you need to enable it in the database with ALTER DATABASE
SET AUTOMATIC_TUNING (FORCE_LAST_GOOD_PLAN = ON)
statement. You can read more about it in the Microsoft documentation.

If neither of those options works, you can force the recompilation of either
stored procedure using EXECUTE WITH RECOMPILE or a statement-
level recompile with OPTION (RECOMPILE) clauses. Listing 6-7 shows
the latter approach.
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Example 6-7. Parameter-sensitive plans: Statement-level recompile
ALTER PROC dbo.GetTotalPerStore(@StoreId int) 
AS 
    SELECT SUM(Amount) as [Total Amount] 
    FROM dbo.Orders 
    WHERE StoreId = @StoreId 
 OPTION (RECOMPILE); 
GO 
EXEC dbo.GetTotalPerStore @StoreId = 99; 
EXEC dbo.GetTotalPerStore @StoreId = 5;

Figure 6-5 shows that SQL Server recompiles the query sniffing parameters
during each call.

www.datasense.ir



www.datasense.ir



Figure 6-5. Execution plans of the queries (statement-level recompile).

Forcing the recompile will allow you to get the most efficient execution
plans on each call—at the cost of constant recompilation overhead. This
approach may be completely acceptable with infrequently executed queries;
however, with frequently executed ones it may lead to noticeable CPU
increase, as I’ll show later in the chapter.

You can address this by utilizing another hint – OPTIMIZE FOR. This hint
allows you to specify parameter values for Query Optimizer to use during
optimization. For example, with OPTIMIZE FOR (@StoreId=5) hint, Query
Optimizer will not sniff @StoreId, instead optimizing it for the value of 5 all
the time.

As you can guess, the danger of using the OPTIMIZE FOR hint is that data
distribution changes. For example, if the store with @StoreId=5 went out of
business, you’d end up with highly inefficient execution plans.

Fortunately, there is another form of this hint: OPTIMIZE FOR
UNKNOWN. With this hint, SQL Server performs an optimization based on
the most statistically common value in the table. In our case, this hint would
lead to the plan with clustered index scan, which is expected with data
distribution in the table.

You can use the hints OPTIMIZE FOR UNKNOWN (in all SQL Server
versions after 2008) or DISABLE_PARAMETER_SNIFFING (in SQL
Server 2016 and up) on the query level. Both hints are essentially the same.
In SQL Server 2016, you can also control it at the database level with the
PARAMETER_SNIFFING database option. Finally, you can disable
parameter sniffing on the server-level with trace flag T4136. This trace flag
also works in SQL Server versions prior to 2016.

NOTE
In my experience, disabling parameter sniffing leads to better and more stable execution
plans in multi-tenant systems and systems with very uneven data distribution. Your
mileage may vary, but it’s worth trying if you see a large number of parameter-sensitive
plans in your system.
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Caching inefficient parameter-sensitive plans increases CPU load.
Unfortunately, that’s not the only issue you can encounter with plan caching.

Parameter-Value Independence
Cached execution plans need to be valid for all possible combinations of
parameters in future calls. As a result, even with parameter sniffing, SQL
Server will not generate an execution plan that cannot be used with some
parameters in the future when SQL Server expects to cache it.

This sounds a bit confusing, so let me demonstrate it with a simple example.
Listing 6-8 shows a very common (and very bad) pattern: the stored
procedure accepts optional parameters, using a single query to cover them
all.

Example 6-8. Parameter-Value Independence
CREATE PROC dbo.SearchOrders 
( 
    @StoreId INT 
    ,@CustomerId UNIQUEIDENTIFIER 
) 
AS 
    SELECT OrderId, CustomerId, Amount, Fulfilled 
    FROM dbo.Orders 
    WHERE  
        ((@StoreId IS NULL) OR (StoreId = @StoreId)) AND 
        ((@CustomerId IS NULL) OR (CustomerId = @CustomerId)); 
GO 
EXEC dbo.SearchOrders  
    @StoreId = 99 
    ,@CustomerId = 'A65C047D-5B08-4041-B2FE-8E3DD6570B8A';

Regardless of what parameters you are using at the time of compilation, you
will get a plan similar to the one shown in Figure 6-6. Even though there are
indexes and SARGable predicates on both the CustomerId and StoreId
columns, SQL Server uses the Index Scan operation instead of Index Seek.
Unfortunately, SQL Server cannot use index seek because the plan needs to
be cached and reused in the future; this plan would not be valid if the seek
predicate (@StoreId parameter in the plan below) was not provided.
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Figure 6-6. Parameter-value independence: Execution plan of the stored procedure

The statement-level recompile addresses the problem, again at the cost of
additional compilation overhead. As noted, this overhead may be acceptable
for infrequently executed queries.

As another option, you could rewrite the code using IF statements that cover
all possible combinations of parameters. If you did, SQL Server would
cache the plan for each statement. It would work in simple cases, but would
quickly become unmanageable as the number of parameters grows.

Finally, writing the code using dynamic SQL is a completely valid option in
many cases. (Listing 6-9 shows how to do that.) Be careful, of course, and
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utilize parameters to prevent SQL injection.

Example 6-9. Dynamic SQL implementation
ALTER PROC dbo.SearchOrders 
( 
    @StoreId INT 
    ,@CustomerId UNIQUEIDENTIFIER 
) 
AS 
BEGIN 
    DECLARE 
        @SQL nvarchar(max) =  
 N'SELECT OrderId, CustomerId, Amount, Fulfilled 
 FROM dbo.Orders 
 WHERE  
    (1=1)' +  
    IIF(@StoreId IS NOT NULL, N'AND (StoreId = @StoreId)','') +  
    IIF(@CustomerId IS NOT NULL, N'AND (CustomerId = 
@CustomerId)',''); 
    EXEC sp_executesql 
        @SQL = @SQL 
        ,@Params = N'@StoreId INT, @CustomerId UNIQUEIDENTIFIER' 
        ,@StoreId = @StoreId, @CustomerId = @CustomerId; 
END

There are other times when caching and reusing plans may lead to
inefficient plans. One case, which is often overlooked, involves filtered
indexes.

The query in Listing 6-10 will not use a filtered index even if you call it
with @Fulfilled = 0 value. This happens because the cached execution plan
that uses the filtered index will not be valid for @Fulfilled = 1 calls.

Example 6-10. Query that would not use filtered index
CREATE NONCLUSTERED INDEX IDX_Orders_ActiveOrders_Filtered 
ON dbo.Orders(OrderId) 
INCLUDE(Fulfilled) 
WHERE Fulfilled = 0; 
GO 
DECLARE 
    @Fulfilled bit = 0; 
SELECT COUNT(*) AS [Active Order Count] 
FROM dbo.Orders 
WHERE Fulfilled = @Fulfilled;
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NOTE
Always add all columns from the filter to either key or included columns in filtered
indexes. This leads to more efficient execution plans.

Unfortunately, this problem can also occur due to auto-parameterization,
which I will discuss later in the chapter. But first, let’s look at compilations
and the overhead they introduce.

Compilation and Parameterization
As you know, SQL Server caches and reuses execution plans for T-SQL
modules and ad-hoc client queries and batches. For ad-hoc queries,
however, the plans are reused only for identical queries. There are a few
factors that dictate that.

First, identical queries need to be exactly the same: a complete character-for-
character match. Look at the queries in Listing 6-11. Only two are identical
(the first and second), even though all of these queries are logically the
same.

Example 6-11. Identical queries
SELECT COUNT(*) FROM dbo.Orders WHERE StoreId = 99; 
SELECT COUNT(*) FROM dbo.Orders WHERE StoreId = 99; 
SELECT COUNT(*) FROM dbo.Orders WHERE StoreId=99; 
select count(*) from dbo.Orders where StoreId = 99;

In addition, some of the SET options affect plan reuse, including
ANSI_NULL_DLFT_OFF, ANSI_NULL_DLFT_ON, ANSI_NULL,
ANSI_PADDING, ANSI_WARNING, ARITHABORT,
CONCAT_NULL_YELDS_NULL, DATEFIRST, DATEFORMAT,
FORCEPLAN, DATEFORMAT, LANGUAGE, NO_BROWSETABLE,
NUMERIC_ROUNDABORT, and QUOTED_IDENTIFIER. Plans
generated with one set of SET options cannot be reused by sessions that use
a different set of SET options.
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You’ve probably noticed that I keep emphasizing the point that query
compilation and optimization processes are resource intensive and may
introduce significant CPU load with a heavy ad-hoc workload. To
demonstrate this, I have created a small application that runs simple queries
from Listing 6-12 in a loop in multiple threads. You can download it from
the companion materials of the book.

In the first test case, the application runs ad-hoc queries using non-
parameterized CustomerId values (the queries are constructed in the
application). Each query in the call is unique and needs to be compiled. The
second test, on the other hand, uses parameterized query. The plan for this
query can be reused across calls.

Example 6-12. Ad hoc versus parameterized workload
-- Test Case 1 
SELECT TOP 1 OrderId  
FROM dbo.Orders  
WHERE CustomerId = '<ID Generated in the app>'; 
-- Test Case 2 
SELECT TOP 1 OrderId  
FROM dbo.Orders  
WHERE CustomerId = @CustomerId;

Both of the queries are extremely light. Moreover, I ran them in the test
environment with enough memory to cache the entire table and eliminate
physical I/O.

Figure 6-7 illustrates the performance metrics collected during the tests. As
you can see, during the second test (on the right), the system was able to
handle almost 6 times more requests per second than during the first test.

www.datasense.ir



Figure 6-7. Ad hoc versus parameterized workload throughput

Obviously, this scenario is completely synthetic; in real life, you are unlikely
to see a situation where SQL Server has to spend majority of its time
compiling queries. Nevertheless, in systems with heavy ad-hoc workloads,
the impact of compilations can be very significant. In addition to CPU load,
there is also an impact on memory, which I will discuss in the next chapter.

There are three SQL Server: SQL Statistics performance counters that can
help you to see system throughput and number of compilations.

Batch Requests/sec

Batch Requests/sec counter shows the number of batches SQL Server
receives per second. Higher values indicate higher system load and
throughput.

SQL Compilations/sec

SQL Compilations/sec counter shows how many compilations SQL
Server performs every second. The higher this number is, the more
compilations and, therefore, the more overhead you have.

www.datasense.ir



SQL Re-Compilations/sec

SQL Re-Compilations/sec counter gives you the number of
recompilations for already cached execution plans. This may happen due
to frequent changes in underlying data in both users and temporary
tables.

In a properly tuned OLTP system, the number of compilations and
recompilations should be just a fraction of the total number of batch
requests. If that is not the case, analyze and reduce the compilations. (We
will talk about how to analyze plan cache data in the next chapter.)

Non-parameterized, ad-hoc client queries are the most common cause of
compilations. As you can guess, the best approach is changing the queries
and parameterizing them. Unfortunately, this usually requires you to change
the client code, which is not always possible.

Fortunately, there is another option: auto-parameterization.

Auto-Parameterization
SQL Server tries to reduce compilation overhead by replacing constants in
ad-hoc queries with parameters and cache compiled plans as if the queries
were parameterized. When this happens, similar ad-hoc queries that use
different constants can reuse cached plans.

Let’s look at the example and run the queries in Listing 6-13. As before, I
am clearing the plan cache with the DBCC FREEPROCCACHE command
to reduce the size of the output.

Example 6-13. Auto-parameterization
DBCC FREEPROCCACHE 
GO 
SELECT * FROM dbo.Orders WHERE OrderId = 1; 
GO 
SELECT * FROM dbo.Orders WHERE OrderId = 2; 
GO 
SELECT  
    p.usecounts, p.cacheobjtype, p.objtype, p.size_in_bytes, t.
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[text]  
FROM 
    sys.dm_exec_cached_plans p CROSS APPLY  
        sys.dm_exec_sql_text(p.plan_handle) t 
WHERE 
    p.cacheobjtype LIKE 'Compiled Plan%' AND  
    t.[text] LIKE '%Orders%' 
ORDER BY 
    p.objtype DESC 
OPTION (RECOMPILE);

Figure 6-8 shows the output of the last statement from the code. As you can
see, there are three entries in the plan cache: a compiled plan used for both
auto-parameterized ad-hoc queries, and two other objects called shell
queries. Each shell query uses about 16KB of memory and stores
information about the original ad-hoc query and links it to the compiled
plan.

Figure 6-8. Plan cache after auto-parameterization

Simple parameterization
By default, SQL Server uses SIMPLE parameterization, and it is very
conservative in parameterizing queries. Simple parameterization only
happens when a cached plan is considered safe to parameterize. This means
that the plan would have the same shape and cardinality estimations, even
when constant or parameter values change.

For example, a plan with a nonclustered index seek and key lookup on a
unique index is safe because nonclustered index seek would never return
more than one row, regardless of parameter value. However, the same
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operation on a non-unique index is not safe. Different parameter values
would lead to different cardinality estimations; this could make a clustered
index scan the better option for some parameter values.

Moreover, there are many language constructs that prevent simple
parameterization, including IN, TOP, DISTINCT, JOIN, UNION, and
subqueries. In practice, this means the majority of queries will not be auto-
parameterized.

Forced Parameterization
Alternatively, SQL Server can use FORCED parameterization. This can be
enabled at the database level with the ALTER DATABASE SET
PARAMETRIZATION FORCED command, or at the query level with a
PARAMETRIZATION FORCED hint. In this mode, SQL Server auto-
parameterizes most ad-hoc queries (with very few exceptions).

Figure 6-9 shows results of the first test case (non-parameterized ad-hoc
queries) from Listing 6-12 after I enable forced parameterization in the
database. While the system throughput is still significantly lower than with a
properly parameterized workload, it is much better than with simple
parameterization (Figure 6-7) that did not auto-parameterize the query. SQL
Server still needs to spend CPU time to auto-parameterize queries; however,
it can reuse the cached execution plan and does not need to optimize all
queries.
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Figure 6-9. Throughput with forced parameterization

Enabling forced parameterization may significantly reduce compilation
overhead and CPU load in systems with heavy ad-hoc workload. You will of
course get different results in different systems, but I’ve had a few cases
where enabling forced parameterization reduced CPU load by as much as 25
to 30%.

Forced parameterization has its downsides, though. When it is enabled, SQL
Server starts to auto-parameterize the majority of ad-hoc queries, which will
open the door to parameter-sensitive plans and parameter-sniffing-related
issues. You can expect some ad-hoc queries to regress because of that.

NOTE
I recommend that you consider disabling parameter sniffing after you enable forced
parameterization. While this may not be the best option for every system, I have found it
helpful in most cases.
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Fortunately, you are not always forced to take an all-or-nothing approach.
As I mentioned, you can enable forced parameterization on the query level
with the PARAMETERIZATION FORCED query hint. This is useful when
you have just a handful of non-parameterized ad-hoc queries and do not
want to enable forced parameterization globally.

If you don’t have access to the source code, you can force the hint through
plan guides. Listing 6-14 shows how to do that. It uses two stored
procedures. The first, sp_get_query_template, creates the query template
based on the sample query provided as parameter. You can use any constant
values in an ad-hoc query for template creation. The second procedure,
sp_create_plan_guide, creates the plan guide.

Example 6-14. Applying forced parameterization through a plan guide
DECLARE 
    @stmt nvarchar(max) 
    ,@params nvarchar(max)  
    ,@query nvarchar(max) =  
N’SELECT TOP 1 OrderId FROM dbo.Orders WHERE CustomerId = 
‘’B970D68B-F88E-438B-9B04-6EDE47CC1D9A’’’; 
EXEC sp_get_query_template 
    @querytext = @query 
    ,@templatetext = @stmt output 
    ,@params = @params output; 
  
EXEC sp_create_plan_guide 
    @type = N’TEMPLATE’ 
    ,@name = N’forced_parameterization_plan_guide’ 
    ,@stmt = @stmt 
    ,@module_or_batch = null 
    ,@params = @params 
    ,@hints = N’OPTION (PARAMETERIZATION FORCED)’;

You can download the test application from this book’s companion materials
and repeat the load tests to validate that the plan guide is working in a
database that uses SIMPLE parameterization.

In some cases, you need to do the opposite and force simple
parameterization for specific queries in the database that use forced
parameterization. This can happen when some ad-hoc queries have
parameter-sensitive plans. Listing 6-15 shows how you can force simple
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parameterization through the plan guide, allowing the ad-hoc query to
utilize filtered index. You need to provide the statement to
sp_create_plan_guide stored procedure as if it already had been auto-
parameterized. You can obtain it from the plan cache, as shown in the
listing, along with the parameters of the statement.

The first query in Listing 6-15 is the one to which I am applying the plan
guide.

Example 6-15. Applying simple parameterization through a plan guide
SELECT OrderId   
FROM dbo.Orders  
WHERE Fulfilled = 0; 
GO 
SELECT  
    SUBSTRING(qt.text, (qs.statement_start_offset/2)+1, 
    (( 
        CASE qs.statement_end_offset 
            WHEN -1 THEN DATALENGTH(qt.text) 
            ELSE qs.statement_end_offset 
        END - qs.statement_start_offset)/2)+1) AS SQL 
    ,qt.text AS [Full SQL] 
FROM  
    sys.dm_exec_query_stats qs with (nolock) 
        CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) qt 
WHERE  
    qt.text like '%Fulfilled%' 
OPTION(RECOMPILE, MAXDOP 1); 
DECLARE 
    @stmt nvarchar(max) =  
        N'select OrderId from dbo . Orders where Fulfilled = @0' 
    ,@params nvarchar(max) = N'@0 int' 
   
-- Creating plan guide 
EXEC sp_create_plan_guide 
    @type = N'TEMPLATE' 
    ,@name = N'simple_parameterization_plan_guide' 
    ,@stmt = @stmt 
    ,@module_or_batch = null 
    ,@params = @params 
    ,@hints = N'OPTION (PARAMETERIZATION SIMPLE)';

SQL Server does not auto-parameterize queries in stored procedures and
other T-SQL modules. You can move some ad-hoc queries to stored
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procedures, avoiding parameter-sensitivity issues when forced
parameterization is enabled.

Finally, I’d like to reiterate: recompilations may lead to significant CPU
overhead in systems with heavy ad-hoc workloads. Pay attention to it!

Parallelism
SQL Server uses parallelism to speed up execution of complex queries by
splitting the queries across multiple CPUs (workers). It improves user
experience by completing queries faster. However, there ain’t such a thing as
a free lunch: parallelism always comes with overhead. With parallel
execution plans, SQL Server needs to do additional work, splitting and
merging the data across multiple workers and managing their execution.

Assume that a query finishes in 1 second, with the serial execution plan
using the same 1,000ms of worker time. The same query may complete in
300ms with a parallel four-CPU plan, consuming 1,050ms of worker time in
total. Managing parallelism requires SQL Server to perform extra work, and
cumulative CPU time will always be higher than in the serial plan.

That overhead may impact throughput in busy OLTP systems. Faster
execution time for a single query does not matter much, since there are
many other queries waiting for CPUs in the queue. The overhead of
parallelism forces them to wait longer for a CPU to become available.
Although parallelism is good in complex reporting and analytical
workloads, it can become a problem in OLTP systems, especially when the
server operates under high CPU loads.

Unfortunately, it is extremely hard to find a system that does not mix both
workloads. Even when you implement a dedicated data warehouse and
operational data store (ODS), there will still be some reports and complex
queries running in the source OLTP systems. Ideally, you want to separate
those workloads, running them with different parallelism settings.

To make matters worse, SQL Server’s default parallelism configuration is
far from optimal. It allows SQL Server to utilize all CPUs in parallel
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execution plans (MAXDOP=0 setting) and generate parallel execution plans
when the cost of queries is equal to or greater than 5 (in technical terms,
when the cost threshold for parallelism, or CTFP, is 5 or more). The
meaning of cost is synthetic: it does not represent anything meaningful and
is used as a baseline metric during query optimization. Nevertheless, the
value of 5 is extremely low nowadays as amounts of data grow; this value
allows parallel execution plans for many queries.

Parallelism presents itself in the system with CXPACKET, CXCONSUMER
and EXCHANGE waits. It is very important to remember, however, that
parallelism is not the root cause but a symptom of the issue. A high
percentage of parallelism waits merely indicates a large number of
expensive queries, which could be completely normal for a given reporting
workload. In OLTP systems, on the other hand, such a figure usually means
that queries are not properly optimized (optimized queries would have a
lower cost).

NOTE
You can see the cost of an individual statement by examining the property of the root
operator in the execution plan.

When I see substantial parallelism waits in OLTP systems, I adjust the
parallelism settings and continue troubleshooting and query tuning.
Optimized queries have a lower cost and therefore reduce parallelism. In
some cases, I even filter out parallelism waits from the wait statistics output,
to get more a detailed picture of other waits.

There are several approaches to tuning parallelism settings. In OLTP
systems I start by setting MAXDOP to one-fourth of the number of
available CPUs. If the server has a large number of CPUs or handles lots of
OLTP requests, I may decrease the number to one-eight or even lower. In
data warehouse systems I might use half of the available CPUs instead.

More importantly, I increase the CTFP. I often start with a CTFP of 50, but
you can examine the cost of the queries to analyze if other thresholds would
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work better. You can run the code from Listing 4-X, uncommenting the
[Query Cost] column to see the cost of cached execution plans.

After the change is done, I monitor CPU load, percent of signal waits, and
parallelism waits and adjust the settings. One goal for these adjustments is
finding the right CFTP value, which will allow SQL Server to separate
different workloads and reduce or even prevent parallelism in OLTP queries.

There are other, more granular options to control parallelism. For example,
you can separate OLTP and reporting workloads with Resource Governor
and set different MAXDOP options for different workload groups. You
could also consider setting MAXDOP to 1 in OLTP systems, enabling
parallelism for reporting queries with a MAXDOP query hint. Either of
those options would require you to monitor the system constantly and work
closely with development teams.

Whatever you do, do not set MAXDOP to 1 for all system workloads. This
just hides the problem. Remember that parallelism is normal – you just need
to make sure it is used legitimately.

Summary
Issues with high CPU load are common nowadays, as fast disk subsystems
and large amount of memory hide the impact of non-optimized queries.
Reducing CPU load often becomes the goal of the performance tuning
process.

Nevertheless, non-optimized queries are still a major factor in increasing
CPU load on the server. The more data SQL Server needs to scan, the more
CPU resources it uses. General query optimization helps to reduce that.

You also learned in this chapter about the overhead of query compilation. In
systems with heavy ad-hoc workloads, query compilation may lead to very
significant CPU usage. Query parameterization in the code is the best option
to address the issue. Alternately, consider enabling forced parameterization
for some queries or at the database level.

www.datasense.ir



Unfortunately, parameterization may lead to issues with parameter-sensitive
plans, where SQL Server compiles and caches plans for atypical parameter
values. Those plans may be highly inefficient for other combinations of
parameters. In many cases, disabling parameter sniffing improves the
situation.

Pay attention to the amount of parallelism in your system. Parallelism is
completely normal for reporting and analytical workloads; however, it is not
desirable in OLTP systems, because parallelism management always adds
overhead.

Remember that parallelism indicates the existence of expensive queries. You
need to optimize them, instead of disabling parallelism and hiding the
problem. Nevertheless, SQL Server’s default parallelism settings are
suboptimal and need to be tuned.

In the next chapter, you’ll learn how to troubleshoot memory-related issues
in SQL Server.

Troubleshooting Checklist
Analyze and reduce CPU load from the processes outside of SQL
Server.

Detect and optimize the worst offenders – the queries that use the
most worker time.

Detect and optimize the most resource-intensive stored procedures
and T-SQL modules.

Review the impact of compilations. Plan cache metrics (which
we’ll discuss in the next chapter) may be useful in cross-checking
the data.

Parameterize critical queries. In the most severe cases of heavy,
non-parameterized ad-hoc workloads, consider enabling forced
parameterization and, potentially, disabling parameter sniffing.

Tune your parallelism settings.
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Chapter 7. Troubleshooting
Memory Issues

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 7th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at dmitri@aboutsqlserver.com.

SQL Server is a memory-intensive application: it can consume hundreds of
gigabytes or even terabytes of memory. This is completely normal and often
a good thing – using this much memory reduces the need for physical I/O
and recompilations, improving server performance.

In this chapter, I will discuss how SQL Server works with memory. I will
start with an overview of how SQL Server uses memory and give you a few
tips on memory configuration. Next, I’ll discuss the memory allocation
process and show you how to analyze the memory usage of internal SQL
Server components. Then I’ll talk about query memory grants and the ways
to troubleshoot extensive query memory usage. Finally, I’ll briefly discuss
memory management and potential issues in In-Memory OLTP
implementation.
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SQL Server Memory Usage and
Configuration
By default, SQL Server tries to allocate as much memory as possible if
memory is required for the operation. It does not allocate all memory at
start time; the allocation occurs as needed, for example when SQL Server
reads data pages to the buffer pool or stores compiled plans in the cache.

You can often see SQL Server consuming most of the OS memory. This is
completely normal – when properly configured, SQL Server responds to OS
requests and deallocates some process memory when needed. This
condition is called external memory pressure. It usually occurs when the OS
does not have enough memory for other applications. In small amounts,
external memory pressure is not necessarily dangerous; however,
deallocating a large amount of memory can significantly impact SQL
Server’s performance.

You can detect those events by setting up an alert on error 17890. The error
generates the following message in the error log providing the information
on how much memory had been trimmed - A significant part of SQL Server
process memory has been paged out. This may result in a performance
degradation. I will discuss how to avoid that later in that section.

Another condition, internal memory pressure, may occur when some SQL
Server components consume large amounts of memory, impacting other
components on the server. In most cases, SQL Server handles those cases
gracefully, dynamically adjusting internal memory usage; however, it may
lead to problems. I’ll show you how to troubleshoot those later in the
chapter.

There are several ways to monitor memory usage on the server. You can
look at the following performance counters in the Memory Manager object.
As a reminder, you can see them in the Performance Monitor utility or
query the sys.dm_os_performance_counters view.

Target Server Memory (KB)
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This performance counter indicates the ideal amount of memory SQL
Server should consume. It depends on configuration settings, the total
amount of memory available to the OS, and a few other factors.

Total Server Memory (KB)

This performance counter shows the amount of memory SQL Server
currently uses.

In normal circumstances, the values of the two counters should stay very
close. There are three cases, however, when Total Server Memory (KB) can
become significantly lower than Target Server Memory (KB):

When the s erver is ramping up shortly after startup; this is
completely normal behavior

When h ardware is overallocated and SQL Server does not need all
the available memory; this is also normal, but may indicate
inefficient capacity planning

During a memory pressure event, when SQL Server responds by
trimming the memory; this condition requires further
troubleshooting

You can also get memory metrics from the sys.dm_os_sys_memory and
sys.dm_os_process_memory views, which provide information about OS
and SQL Server memory usage, respectively. Listing 7-1 shows the code
that uses them.

Listing 7-1. Analyzing OS and SQL Server memory usage

SELECT total_physical_memory_kb / 1024 AS [Physical Memory (MB)]  
,available_physical_memory_kb / 1024 AS [Available Memory (MB)]  
,total_page_file_kb / 1024 AS [Page File Commit Limit (MB)] 
,available_page_file_kb / 1024 AS [Available Page File (MB)]  
,(total_page_file_kb - total_physical_memory_kb) / 1024  
 AS [Physical Page File Size (MB)] 
,system_cache_kb / 1024 AS [System Cache (MB)] 
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 /* Values: LOW/HIGH/STEADY */ 
,system_memory_state_desc AS [System Memory State]  
FROM sys.dm_os_sys_memory WITH (NOLOCK);

SELECT  
 physical_memory_in_use_kb / 1024  
 AS [SQL Server Memory Usage (MB)] 
,locked_page_allocations_kb / 1024  
 AS [SQL Server Locked Pages Allocation (MB)] 
,large_page_allocations_kb / 1024  
 AS [SQL Server Large Pages Allocation (MB)]  
,memory_utilization_percentage 
,available_commit_limit_kb 
,process_physical_memory_low /* May indicate memory pressure */ 
,process_virtual_memory_low 
FROM sys.dm_os_process_memory WITH (NOLOCK);

You can get historical information about Target and Total Server Memory
from a system_health xEvent session. You can also see it in the
sp_server_diagnostics_component_result event on the target (the partial
output is shown in Listing 7-2). This information may be useful when you
are troubleshooting unexplained performance issues and need to check
whether the server experienced memory pressure during the time the
problem occurred.

T his data is also captured by a hidden xEvent session and stored in XEL
files in SQL Server Log folder. The names of those files consist of the
server and instance name followed by an SQLDIAG string.

Listing 7-2. sp_server_diagnostics_component_result event in
system_health session (partial)

<resource lastNotification="RESOURCE_MEM_STEADY" 
outOfMemoryExceptions="0" isAnyPoolOutOfMemory="0" 
processOutOfMemoryPeriod="0"> 
 <memoryReport name="Process/System Counts" unit="Value"> 
 <entry description="Available Physical Memory" 
value="65669554176" /> 
 <entry description="Available Virtual Memory" 
value="138792447782912" /> 
 <entry description="Available Paging File" value="67695706112" 
/> 
 <..> 
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 </memoryReport> 
 <memoryReport name="Memory Manager" unit="KB"> 
 <entry description="Locked Pages Allocated" value="641593188" /> 
 <entry description="Large Pages Allocated" value="3248128" /> 
 <entry description="Target Committed" value="653261832" /> 
 <entry description="Current Committed" value="653263320" /> 
  <..> 
 </memoryReport> 
</resource>

Let’s look at several options you can use to configure SQL Server memory.

Configuring SQL Server Memory
There are two well-known configuration settings that control SQL Server
memory usage: Maximum and Minimum Server Memory.

Maximum Server Memory

The maximum amount of memory SQL Server can allocate. There are
some cases when it can allocate memory beyond this amount; if so, it
will detect that condition and deallocate excess memory.

Minimum Server Memory

The m inimum amount of memory reserved for an SQL Server instance.
SQL Server does not pre-allocate memory to match Minimum Server
Memory value on startup. However, SQL Server would not deallocate
the memory below it once the threshold is reached.

The default settings allow SQL Server to allocate all available memory
without reserving any memory for the instance. This behavior may be
sufficient in many systems with low or even mid-size loads. You may
benefit, however, from tuning them (especially Maximum Server Memory)
in your environment. Keep in mind that incorrect memory configuration
may harm your system more than if you just keep default values.
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Setting Maximum Server Memory usually requires some tuning. You can
start with the base value and then adjust it by monitoring available physical
memory on the server, using the available_physical_memory_kb column in
the sys.dm_os_sys_memory view or the Memory\Available MBytes
performance counter. Keep at least 512MB of memory reserved on the
small servers, and 1GB or more reserved on servers with 128GB of RAM
or more.

You can calculate the base value to start with the following formula:

Total_Physical_Memory - (4GB + 1GB * (Total_Physical_Memory –
16GB) / 8) - Memory_For_Other_Apps.

In case you are using an older version of SQL Server than 2012, you need
to reserve additional memory, since the Maximum Server Memory setting
in those versions controls memory usage of the buffer pool only.

NOTE
I am not covering memory configuration in the 32-bit version of SQL Server. If you are
still using that, it’s time to upgrade!

You need to properly estimate memory usage for other applications and
reserve some memory for them. Those applications make memory
management more complicated and can also impact system performance. I
strongly recommend using dedicated SQL Servers in mission critical
systems and not running any applications (including SSRS and SSAS)
there.

Setting Maximum Server Memory does not prevent SQL Server from
responding to memory pressure. In some extreme cases, Windows can even
page some of SQL Server’s physical memory to a page file. You can
prevent this by granting SQL Server Lock Pages In Memory (LPIM)
permission in Group Policy.

Using LPIM may help to improve SQL Server’s responsiveness in the event
of extreme external memory pressure. Be very careful with this setting,
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though, especially in non-dedicated environments. It requires you to
configure Maximum Server Memory properly and may lead to OS stability
issues and even crashes if you over-allocate it.

The overhead of memory management on large servers can also increase
shutdown time, which, in turn, can impact failover duration in SQL Server
Failover Cluster. You can improve it by enabling Large Page Allocations
with trace flag T834. In this mode, SQL Server allocates memory in the
larger chunks, which speeds up the process and reduces memory
management overhead. This setting requires you to enable LPIM and forces
SQL Server to pre-allocate all memory up to Maximum Server Memory
value on startup. This may increase SQL Server startup time, especially on
servers with a large amount of memory.

Test Large Page Allocations carefully before you enable it. You are unlikely
to benefit from it unless the server has at least 384GB of RAM. Do not
enable it in non-dedicated environments, nor in environments that use
columnstore indexes. Unfortunately, those two technologies do not work
well with each other. Th at problem has been partially addressed in SQL
Server 2019, where you can utilize some of the Large Page Allocations
features in environments with columnstore indexes. You need to use another
trace flag T876 instead of T834 to enable this. Nevertheless, carefully test
the system before switching it on.

How Much Memory Is Enough?
I discussed hardware in Chapter 1, but I’d like to repeat a few things here.
Memory is the key resource in SQL Server. Adding more memory to the
servers is often the fastest and cheapest way to improve system
performance.

There are no limitations on how much memory SQL Server can utilize with
Enterprise Edition. Add as much memory as your server can support and
use the fastest memory possible. Pay attention to the size of your active data
– there ’s no need to build a server with terabytes of RAM for a 100GB
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database, but keep future growth in mind and add some memory to support
it.

In Standard Edition, the buffer pool size is limited to 128GB, but you’ll
need additional memory for other SQL Server components and the OS. I
recommend provisioning the servers with 192GB of RAM to be on the safe
side.

You will need even more memory if you are using columnstore indexes or
In-Memory OLTP. The former uses an additional 32GB per Standard
Edition instance to store segment data. The latter uses up to 32GB of RAM
per database.

You can improve memory utilization by decreasing internal index
fragmentation (the avg_page_space_used_in_percent column in the
sys.dm_db_index_physical_stats view) and/or applying data compression.
That will reduce the number of data pages and allow SQL Server to cache
more data in the buffer pool.

Fortunately, memory is cheap nowadays – benefit from it!

Memory Allocations
As I mentioned in Chapter 2, almost all memory allocations in SQL Server
are done through SQLOS. Extended stored procedures and linked server
providers can perform memory allocation outside of SQLOS and, therefore,
would not be controlled by the Maximum Server Memory setting.

Internally, SQLOS partitions the memory into memory nodes based on the
server’s NUMA configuration – one memory node per NUMA node. Each
memory node has a memory allocator, which uses various Windows and
Linux API methods to allocate and deallocate the memory.

In earlier versions of SQL Server, memory allocation was carried out with
single-page allocators for memory allocations less than 8 KB and multi-
page allocators for any allocations greater than 8KB. Starting with SQL
Server 2012, the memory allocators were consolidated into one allocator for
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any size page. You can track memory usage and allocations per memory
node with the sys.dm_os_memory_nodes view.

Internally, allocations become memory objects. Each memory object stores
an allocated memory along with its metadata (size, owner, etc.). You can
analyze memory objects with the sys.dm_os_memory_objects view;
although, I rarely use it during troubleshooting.

Another key element of SQL Server memory architecture is called memory
clerks. Each major component of SQL Server has its own memory clerk,
which works as the proxy between component and memory allocator. When
a component needs memory, it sends a request to the corresponding
memory clerk, which in turn, gets the memory object from the memory
allocator.

The last major component in SQL Server dynamic memory management is
called the memory broker. Memory brokers supervise memory clerks by
adjusting their memory usage based on available process memory, memory
pressure, and other conditions. Memory brokers do not allocate or
deallocate memory by themselves; however, they can send the signal to
memory clerks to shrink or grow. You can look at the
sys.dm_os_memory_brokers view to see memory broker state and amount
of memory they allocate.

Figure 7-1 shows dependencies between memory management components
in SQL Server.
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Figure 7-1. Memory management components

I usually start analyzing memory usage by looking at memory clerks using
the sys.dm_os_memory_clerks view. Listing 7-3 shows how to do that. The
code will work in SQL Server 2012 and above. If you are using an older
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version of SQL server, y ou should replace the single_page_kb column with
the sum of pages_kb and multi_pages_kb columns.

Listing 7-3. Analyzing memory usage
SELECT TOP 15 
 [type] AS [Memory Clerk] 
,CONVERT(DECIMAL(16,3),SUM(pages_kb) / 1024.0) AS [Memory 
Usage(MB)] 
FROM sys.dm_os_memory_clerks WITH (NOLOCK) 
GROUP BY [type] 
ORDER BY sum(pages_kb) DESC

Figure 7-2 shows the output of the script from one of the production SQL
Servers that use 640GB of RAM. The sys.dm_os_memory_clerks view
provides you enough information to quickly evaluate memory usage and
detect potential abnormalities.
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Figure 7-2. Memory usage on one of production servers

You can see a complete list of memory clerks in the Microsoft
Documentation.
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Memory Clerks
Let’s look at the most common memory clerks you may encounter.

MEMORYCLERK_SQLBUFFERPOOL
As you can guess by its name, MEMORYCLERK_SQLBUFFERPOOL
controls memory allocation of the buffer pool. Usually, it is one of the
largest memory consumers, especially when the server works with large
databases.

There are no specific thresholds for ideal buffer pool size - it depends on
your system. Large buffer pools are completely normal and mean that SQL
Server just caches more data. There is nothing to worry about - when other
SQL Server components need more memory, SQL Server trims the size of
the buffer pool if there is no OS memory left to allocate.

Small buffer pools, on the other hand, may require some investigation. It
does not necessarily present a problem – remember that SQL Server caches
the active data the system is using. For example, even if you have a large
multi-terabyte database, your buffer pool will be small if you work with a
small subset of data.

You can check the Page Life Expectancy performance counter (Listing 3-3),
which shows the number of reads in data files (Listing 3-1) and percentage
of PAGEIOWAITS, to determine if the buffer pool is constantly flushing. If
this is the case, especially in OLTP systems, you should analyze the
memory usage of other clerks and potential memory pressure conditions.
Obviously, you should detect and optimize inefficient queries – the less data
you need to scan, the less data you’d bring to the buffer pool.

Remember that non-Enterprise editions of SQL Server have limitations on
the maximum buffer pool size. For example, the Standard Edition is limited
to 128GB of RAM in SQL Server 2016 and above, and to 64GB in older
versions.

Listing 7-4 shows a query that displays your buffer pool memory usage on a
per-database basis. This may help you analyze when the server uses
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multiple databases. As a bonus, the code also returns the average time of the
physical reads for data pages from disk.

Listing 7-4. Buffer pool usage on per-database basis

;WITH BufPoolStats 
AS 
( 
 SELECT  
 database_id 
,COUNT_BIG(*) AS page_count 
,CONVERT(DECIMAL(16,3),COUNT_BIG(*) * 8 / 1024.) AS size_mb 
,AVG(read_microsec) AS avg_read_microsec 
 FROM  
 sys.dm_os_buffer_descriptors WITH (NOLOCK) 
 GROUP BY  
 database_id 
) 
SELECT  
 DB_NAME(database_id) AS [DB] 
,size_mb 
,page_count 
,avg_read_microsec 
,CONVERT(DECIMAL(5,2), 100. * (size_mb / SUM(size_mb) OVER()))  
 AS [Percent] 
FROM  
 BufPoolStats 
ORDER BY  
 size_mb DESC 
OPTION (MAXDOP 1, RECOMPILE);

CACHESTORE_OBJCP, CACHESTORE_SQLCP, and
CACHESTORE_PHDR Memory Clerks
CACHESTORE and USERSTORE memory clerks are, in a nutshell, the
caches for different types of data. The CACHESTORE_OBJCP,
CACHESTORE_SQLCP, and CACHESTORE_PHDR memory clerks store
plan cache– related objects.

CACHESTORE_PHDR

This memory clerk caches internal objects used during query
compilations.
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CACHESTORE_OBJCP

This memory clerk stores compiled execution plans for stored
procedures, functions, triggers, and other SQL objects.

CACHESTORE_SQLCP

This memory clerk stores compiled execution plans for ad-hoc queries,
prepared statements, and server-side cursors.

CACHESTORE_PHDR clerks are most commonly used for compiling
queries that reference complex views, large batches, and statements with a
large number of constants in the IN clause. The objects cached by them are
short-lived and are cached only during query compilation.

The CACHESTORE_PHDR clerk rarely consumes large amounts of
memory. When you see high memory usage from this clerk, analyze the
code and database schema to see if there are opportunities for refactoring.
Don’t do unnecessary refactoring though. For example, an application that
passes a large amount of data to a stored procedure through table-valued
parameters (TVP) may generate a large batch of individual insert statements
to populate them. Although refactoring and switching to per-row processing
may reduce memory usage during compilation, it could seriously impact
system throughput as per-row processing will be slower than set-based
operations with TVPs.

In most systems, the majority of plan cache memory will be allocated by
CACHESTORE_OBJCP and CACHESTORE_SQLCP clerks. Memory
consumption of CACHESTORE_OBJCP depends on the database schema
and data tier architecture. Systems with a large number of actively used
stored procedures and other T-SQL modules use more memory to store their
execution plans. A reasonably high memory usage of
CACHESTORE_OBJCP would not introduce any issues as long as it does
not impact other components.
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The situation is different with CACHESTORE_SQLCP clerks. Large
memory consumption there usually indicates an excessive ad-hoc workload,
which is CPU intensive and consumes plan cache memory.

You have already seen CPU overhead from ad-hoc queries in the previous
chapter. Now, let me show you an example of memory overhead introduced
by it. Listing 7-5 runs 1,000 simple ad-hoc queries and checks the plan
cache state afterward using sys.dm_exec_cached_plans view. This script
clears the content of the cache with the DBCC FREEPROCCACHE
command – do not run it on the production server!

Listing 7-5. Running 1,000 ad-hoc queries and examining plan cache
content

DBCC FREEPROCCACHE 
GO 
  
DECLARE  
 @SQL NVARCHAR(MAX) 
,@I INT = 0 
  
WHILE @I < 1000 
BEGIN 
 SELECT @SQL =  
N'DECLARE @C INT;SELECT @C=object_id FROM sys.objects WHERE 
object_id='  
+ CONVERT(NVARCHAR(10),@I); 
 EXEC(@SQL); 
 SELECT @I += 1; 
END; 
  
SELECT  
 p.usecounts, p.cacheobjtype, p.objtype, p.size_in_bytes, t.
[text]  
FROM  
 sys.dm_exec_cached_plans p WITH (NOLOCK) 
 CROSS APPLY sys.dm_exec_sql_text(p.plan_handle) t 
WHERE  
 p.objtype = 'Adhoc' 
ORDER BY 
 p.objtype DESC 
OPTION (RECOMPILE); 
  
SELECT  
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 CONVERT(DECIMAL(12,3),SUM(1. * p.size_in_bytes)/1024.) AS [Size 
(KB)] 
FROM  
 sys.dm_exec_cached_plans p WITH (NOLOCK) 
WHERE  
 p.objtype = 'Adhoc' 
OPTION (RECOMPILE);

Figure 7-3 shows the content of the plan cache and its memory usage when
I run a query with the Optimize for ad-hoc workloads configuration setting
disabled. There are 1,000 plans cached, each of which uses 48KB of
memory, or 48MB total. Keep in mind, I ran a very simple query. Large and
complex queries will use significantly more memory for the execution
plans.

Figure 7-3. Plan cache content when Optimize for ad-hoc workloads is disabled

Figure 7-4 shows plan cache statistics after I repeat the test with the
Optimize for ad-hoc workloads configuration setting enabled. I still have
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1,000 plans in the cache; however, memory usage is significantly lower.
SQL Server caches small 400-byte structures, called compiled plan stubs,
instead of actual compiled plans. These structures are the placeholders that
are used to keep track of which ad-hoc queries were executed. When the
same query runs a second time, SQL Server replaces compiled plan stub
with the actual compiled plan and reuses it going forward.

Figure 7-4. Plan cache content when Optimize for ad-hoc workload is enabled

As I already mentioned multiple times, the Optimize for ad-hoc workloads
setting should be enabled in most systems. It will reduce plan cache
memory consumption and improve system performance.

Finally, let’s repeat the same test using parameterized query as shown in
Listing 7-6.

Listing 7-6. Running parameterized query and examine plan cache content
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DBCC FREEPROCCACHE 
GO 
  
DECLARE  
 @SQL NVARCHAR(MAX),@I INT = 0 
  
WHILE @I < 1000 
BEGIN 
 SELECT @SQL =  
N'DECLARE @C INT;SELECT @C=object_id FROM sys.objects WHERE 
object_id=@P';  
 EXEC sp_executesql @SQL=@SQL,@Params=N'@P INT',@P = @I; 
 SELECT @I += 1; 
END; 
  
SELECT  
 p.usecounts, p.cacheobjtype, p.objtype, p.size_in_bytes, t.
[text]  
FROM  
 sys.dm_exec_cached_plans p WITH (NOLOCK) 
 CROSS APPLY sys.dm_exec_sql_text(p.plan_handle) t 
WHERE  
 p.objtype = 'Adhoc' 
ORDER BY 
 p.objtype DESC 
OPTION (RECOMPILE); 
  
SELECT  
 CONVERT(DECIMAL(12,3),SUM(1. * p.size_in_bytes)/1024.) AS [Size 
(KB)] 
FROM  
 sys.dm_exec_cached_plans p WITH (NOLOCK) 
WHERE  
 p.objtype = 'Adhoc' 
OPTION (RECOMPILE);

As you can see in Figure 7-5, there is a single execution plan cached. This
reduces memory consumption and CPU load on the server.
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Figure 7-5. Plan cache content with parameterized query

The size and amount of memory consumed by plan cache depends on the
system workload, complexity of the execution plans, and data-tier design. It
is not uncommon to see memory clerks using gigabytes or even tens of
gigabytes of memory. Nevertheless, pay attention to it and analyze the
content of the plan cache when you see the large numbers.

This is especially important if you see high memory usage by the
CACHESTORE_SQLCP clerk. More often than not, it is the sign of a
heavy ad-hoc workload and large number of single-use plans. As you saw
earlier in the chapter, this impacts system performance.

There is another caveat regarding the ad-hoc workload. By default, SQL
Server can cache about 160,000 objects in the plan cache. Reaching this
limit may lead to additional CPU contention.

You may increase this number to about 640,000 objects by enabling trace
flag T174. This may reduce CPU load in systems with very heavy ad-hoc
workloads; however, it may also negatively impact performance as SQL
Server would use more memory for plan cache. Test it before deploying to
production.

Listing 7-7 shows three queries you can use for plan cache analysis and
troubleshooting. The first gives you the information about cached plan-
cache objects grouped by their types. The data is collected from all plan-
cache memory clerks.
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The second query gives you the number of single-used plans along with the
memory they consume in plan cache. Large numbers, and especially large
memory consumption, may warrant further investigation. The third query
helps you detect the most memory-intensive single-used plans.

Listing 7-7. Analyzing plan cache

-- Number of cached object and their memory usage grouped by type 
SELECT  
 cacheobjtype 
,objtype  
,COUNT(*) AS [Count] 
,CONVERT(DECIMAL(12,3),SUM(1.*size_in_bytes)/1024./1024.)  
 AS [Size (MB)]  
FROM  
 sys.dm_exec_cached_plans WITH (NOLOCK) 
GROUP BY  
 cacheobjtype, objtype 
ORDER BY 
 [Size (MB)] DESC 
OPTION (RECOMPILE); 
-- Statistics on single-used execution plans 
SELECT 
 COUNT(*) AS [Single-used plan count] 
,CONVERT(DECIMAL(10,3),SUM(cp.size_in_bytes)/1024./1024.)  
 AS [Size (MB)] 
FROM 
 sys.dm_exec_cached_plans cp WITH (NOLOCK) 
WHERE  
 cp.objtype in (N'Adhoc', N'Prepared') AND  
 cp.usecounts = 1 
OPTION (RECOMPILE); 
-- 25 most memory-intensive single-used plans  
SELECT TOP 25 
 DB_NAME(t.dbid) as [DB] 
,cp.usecounts 
,cp.plan_handle 
,t.[text]  
,cp.objtype 
,cp.size_in_bytes 
,CONVERT(DECIMAL(12,3),cp.size_in_bytes/1024.) as [Size (KB)] 
FROM 
 sys.dm_exec_cached_plans cp WITH (NOLOCK) 
 CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) t 
WHERE  
 cp.cacheobjtype = N'Compiled Plan' 
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 AND cp.objtype in (N'Adhoc', N'Prepared') 
 AND cp.usecounts = 1 
ORDER BY  
 cp.size_in_bytes DESC  
OPTION (RECOMPILE);

You can remove individual execution plans from the cache by calling the
DBCC FREEPROCCACHE statement and providing the plan handle as the
parameter. This can be useful if you want to remove specific large single-
use plans without affecting others. You can also do that to remove regressed
parameter-sensitive plans affected by parameter sniffing.

You can also clear all plans stored by CACHESTORE_SQLCP memory
clerk with the DBCC FREESYSTEMCACHE('SQL Plans') WITH
MARK_IN_USE_FOR_REMOVAL command. This removes all ad-hoc
and prepared plans from the cache regardless of how often they were re-
used keeping plans from stored procedures and other T-SQL modules intact.

Obviously, address the root-cause of the issue when it is possible. Enable
Optimize for ad-hoc workloads and parameterize the queries as I discussed
in the previous chapter.

Finally, pay attention when the plan cache is small and does not use much
memory. It could be completely normal when the system uses
parameterized queries and stored procedures and has little ad-hoc activity.
On the other hand, it may be a sign of memory pressure when the plan
cache is constantly shrinking. Analyze compilation and recompilation
performance counters when this is the case.

OBJECTSTORE_LOCK_MANAGER Memory Clerk
The OBJECTSTORE_LOCK_MANAGER clerk stores lock structures that
SQL Server uses to support concurrency. High memory usage of this
memory clerk indicates a large number of active locks being currently held.
Usually, you’d try to keep the number of active locks as small as possible;
however, there are the cases when you may need to acquire many row-level
locks and prevent their escalation to object level.
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I will talk about troubleshooting the SQL Server concurrency issues in the
next chapter.

MEMORYCLERK_SQLQERESERVATIONS Memory Clerk
The MEMORYCLERK_SQLQERESERVATIONS clerk manages memory
grants - memory allocated to queries during their execution. It is common
to see this clerk in the list of top memory consumers, especially in systems
with data warehouse and reporting workloads.

I will talk about memory management during query execution and
troubleshooting of extensive memory grants later in this chapter.

USERSTORE_TOKENPERM Memory Clerk
The USERSTORE_TOKENPERM clerk provides memory for a security
token store that is used to track user permissions and various other security
objects. A l arge token store may introduce performance issues by
increasing CPU load and triggering internal memory pressure by stealing
the memory from other SQL Server components.

Unfortunately, this is a hard problem to address. To make it even worse,
there are many known issues related to the token store in SQL Server. Some
of them may be triggered by extensive usage of application roles and heavy
ad-hoc workload.

Keep an eye on the USERSTORE_TOKENPERM memory clerk. If the size
is more than a few gigabytes, it may indicate that you have a problem,
especially if it continues to grow. In this case, apply the latest service pack
and/or cumulative update. If that does not help, consider opening a support
case with Microsoft CSS.

As a temporary solution, you can clear the token store by using the DBCC
FREESYSTEMCACHE (‘TokenAndPermUserStore’) command. In some
cases, you may need to clear the token store on a regular basis by using the
SQL Server Agent job, for example, until you have a permanent solution.

MEMORYCLERK_SQLCONNECTIONPOOL Memory Clerk
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The MEMORYCLERK_SQLCONNECTIONPOOL clerk provides
memory for connection-specific objects that the client needs the server to
maintain. The most common case is to use prepared statement handles that
are generated by SP_PREPEXECRPC stored procedure calls during some
RPC calls.

Memory consumption by this clerk is rarely a problem. It may grow,
however, when client applications do not properly discard prepared handles
while maintaining open connections to the database. You may have to
restart the application and, in some cases, restart SQL Server to clear up the
memory.

Obviously, it is better to address the root-cause of the issue in the
application code and close the handles after execution.

MEMORYCLERK_SQLCLR,
MEMORYCLERK_SQLCLRASSEMBLY, and
MEMORYCLERK_SQLEXTENSIBILITY Memory Clerks
MEMORYCLERK_SQLCLR, MEMORYCLERK_SQLCLRASSEMBLY
and MEMORYCLERK_SQLEXTENSIBILITY clerks are used for memory
allocations in CLR and other supported language extensions (Java, R, and
Python). All external languages will manage the memory and perform
garbage collection automatically; however, it is possible to write code that
consumes a large amount of memory during the execution. Think about
processing large files or working with large documents, for example.

When you see high memory usage in those memory clerks, analyze the
usage of CLR and/or external languages. You may need to work with
developers and refactor or even migrate some code to the application
servers.

MEMORYCLERK_XTP memory clerk
The MEMORYCLERK_XTP clerk controls memory allocations for In-
Memory OLTP technology. When you see high memory usage in this clerk,
you need to look at memory-optimized tables memory consumption along
with a few other things I will discuss later in that chapter.
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The high memory usage of In-Memory OLTP may be completely legitimate
when memory-optimized tables store large amounts of data. More
importantly, that memory is not going to be released in case of memory
pressure when In-memory OLTP is in use. You should take this into
consideration when planning hardware capacity for servers (secondary AG
replicas, DR servers, lower environments, etc.). The database will not start
up and/or data in memory-optimized tables will become read-only if the
server does not have enough memory to accommodate In-Memory OLTP
data.

Wrapping Up
It is impossible and unnecessary to cover all memory clerks in this section.
Fortunately, Microsoft provides a comprehensive list of all memory clerks
in their documentation. Even though it does not include troubleshooting
guidelines, it will help you understand what each memory clerk is
responsible for and will point you in the right direction for troubleshooting.

As a word of caution - don’t have tunnel vision and jump to immediate
conclusions strictly based on clerks’ memory usage. With very few
exceptions, there are no specific guidelines on how much memory each
memory clerk should use. You need to look at memory usage holistically
and understand how different components impact each other.

For example, having a lot of memory reserved for query execution
(MEMORYCLERK_SQLQERESERVATIONS) may be completely normal
if it does not impact buffer pool, plan cache and other SQL Server
components. On the other hand, it may be dangerous when it introduces
internal memory pressure. Remember to use memory clerk information
together with other metrics in your analysis.

DBCC MEMORYSTATUS command
If you have worked with SQL Server long enough, you are probably
familiar with the DBCC MEMORYSTATUS command, which provides a
snapshot of the current memory usage in SQL Server. Personally, I consider
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this command to be a mixed bag. Although it consolidates all memory
usage information into one multi-result-set output, it has a limited ability to
filter and aggregate data. More often than not, I collect the metrics using
data management views instead.

I am not going to cover the DBCC MEMORYSTATUS command in this
book, but I’d encourage you to run it and see if you like how it presents the
information and if you find it easy to interpret. It is just a different and
consolidated projection of the data I’ve already discussed in this chapter.

Query Execution and Memory Grants
Every query in SQL Server needs to use some memory in order to run. This
memory is called memory grant and it is assigned to the query before it
starts executing. The query will not start until the memory is available and
may eventually time out if it cannot start.

The size of the memory grant depends on the operators in the execution
plan, cardinality estimations, degree of parallelism, execution mode (row-
or batch-mode), and a few other factors. For example, Sort or Hash
operators need additional memory to support internal structures. They also
benefit from extra memory to store all or a subset of the data in memory
rather than spilling it to tempdb.

You can see memory grant information in the query execution plan. Figure
7-6 shows the information available in the query plan window in the
SELECT (top plan operator) pop up and SSMS properties window. You can
also get the same data from the XML representation of the execution plan.
The numbers are in KB.
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Figure 7-6. Memory grant information in SSMS

Let’s look at memory grant properties.

Required Memory

Absolute minimum amount of memory required for a query to execute.
A query will not start until this memory is available.

Serial Required Memory
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Absolute minimum amount of memory required for query to execute in
case of serial execution plan. This will match Required Memory if a
query runs serially.

Desired Memory

Amount of memory the query wants in the perfect scenario. For
example, if a query plan contains a Sort operator, Desired Memory may
include enough memory to sort all data in memory based on cardinality
estimations.

Serial Desired Memory

Desired amount of memory if queries are executed serially.

Requested Memory

Amount of memory query requested from SQL Server when asking for
a memory grant.

Granted Memory

Memory granted to a query.

Max Used Memory

Amount of memory used by a query during the execution.

Max Query Memory

Maximum possible size of a memory grant for queries.

Grant Wait Time

Amount of time that a query waited for a memory grant.

www.datasense.ir



The size of a memory grant is calculated at query optimization time and
cached with the execution plan. Further executions of the queries will reuse
the same grant sizes; however, SQL Server 2017 and above can recalculate
the size of the memory grant based on actual memory usage from previous
execution. I will cover this behavior later in this chapter.

As I mentioned earlier, memory grants are managed by a
MEMORYCLERK_SQLQERESERVATIONS clerk, which uses a thread
synchronization object called resource semaphore to allocate the memory.

When memory cannot be allocated, the resource semaphore puts queries
into the wait queue, generating RESOURCE_SEMAPHORE waits.
Internally, the resource semaphore uses two wait queues and ranks queries
based on their memory grant size and query cost. The first queue, called the
small-query resource semaphore, stores queries that require less than 5MB
and costs less than 3 cost units. The second queue stores all other queries.

The r esource semaphore processes requests on a first-come-first-serve
basis. It favors the small-query resource queue over the other one, and
reduces the waiting time for the small queries that do not require a large
amount of memory.

You need to monitor the situation when queries are waiting for memory
grants to execute. This is unhealthy and requires investigation. The
presence of RESOURCE_SEMAPHORE in noticeable amounts indicates a
problem.

There are several performance counters in the Memory Management object
that you can use for the monitoring and troubleshooting.

Memory Grants Pending

Shows the number of memory grant requests that are currently pending.
Ideally, this counter should show 0 all the time, which indicates that
there are no queries waiting for memory grants.

Memory Grants Outstanding
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Shows the number of currently running queries with fulfilled memory
grant requests. Large values in this counter indicates a memory-
intensive workload (usually queries with Sort and Hash operators).
Although this can be normal in data warehouses, you need to investigate
this condition in OLTP systems.

Maximum Workspace Memory

Provides total amount of workspace memory in KB.

Granted Workspace Memory

Indicates how much workspace memory in KB is currently in use.

You can get more detailed information about total and granted sizes of
workspace memory with the sys.dm_exec_query_resource_semaphores
view. It provides you with statistics for both resource semaphore queues
including memory information, number of queries in the waiting queue, and
a few other metrics.

You can obtain information about pending and outstanding memory grants
from sys.exec_query_memory_grants view as shown in Listing 7-8. The
grant_time column shows the time when the grant was fulfilled. A NULL
value in this column indicates that grant is pending.

Listing 7-8. Memory grant information

SELECT mg.session_id 
,t.text AS [sql] 
,qp.query_plan AS [plan] 
,mg.is_small /* Resource Semaphore Queue information */ 
,mg.dop 
,mg.query_cost 
,mg.request_time 
,mg.grant_time 
,mg.wait_time_ms 
,mg.required_memory_kb 
,mg.requested_memory_kb 
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,mg.granted_memory_kb 
,mg.used_memory_kb 
,mg.max_used_memory_kb 
,mg.ideal_memory_kb 
FROM 
 sys.dm_exec_query_memory_grants mg WITH (NOLOCK) 
 CROSS APPLY sys.dm_exec_sql_text(mg.sql_handle) t 
 CROSS APPLY sys.dm_exec_query_plan(mg.plan_handle) qp 
--WHERE -- Uncomment to see only pending memory grants 
-- mg.grant_time IS NULL 
ORDER BY 
 mg.requested_memory_kb DESC 
OPTION (RECOMPILE, MAXDOP 1);

The sys.dm_exec_query_memory_grants view shows you the current status
of memory grants. However, you may need to look at historical memory
usage and detect the most memory-intensive queries. You can use the
methods discussed in Chapter 4 to analyze memory grants data during
troubleshooting.

The simplest approach, perhaps, is using query execution statistics and
sys.dm_exec_query_stats view. It includes several columns to track query
memory grants and memory usage. You can use the code from Listing 4-1
sorting data by total_grant_kb and/or [avg grant kb] columns and detect
most memory intensive queries. Alternatively, you can get the data from the
Query Store when it is enabled.

Finally, you can track memory grants requests in run-time with Extended
Events. In SQL Server 2014 SP2 and above, you can use lightweight query
profiling, which I discussed in Chapter 5. In older versions, you can use
query_memory_grant_usage event instead.

Optimizing Memory Intensive Queries
When you detect a lot of memory-intensive queries, analyze their execution
plans. In most cases, memory grants are driven by the memory usage of
Hash and Sort operators. If possible, capture actual execution plans, as they
will provide you with the actual number of rows processed by operators
along with their memory usage.
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Unfortunately, there is no silver bullet that can magically optimize queries
and reduce their memory consumption. However, there are a few things you
can do instead. First, analyze if there is an opportunity for better indexing.
This may eliminate unnecessary sorts and, in some cases, can change hash
join to loop join, which does not use much memory.

Let’s look at an example and create a table as shown in Listing 7-9.

Listing 7-9. Optimizing memory intensive queries: Table creation

CREATE TABLE dbo.Orders 
( 
 OrderID INT NOT NULL, 
 OrderDate DATETIME2(0) NOT NULL, 
 Placeholder CHAR(8000) NULL, 
 CONSTRAINT PK_Orders PRIMARY KEY CLUSTERED(OrderID) 
); 
  
;WITH N1(C) AS (SELECT 0 UNION ALL SELECT 0) -- 2 ROWS 
,N2(C) AS (SELECT 0 FROM N1 AS T1 CROSS JOIN N1 AS T2) -- 4 ROWS 
,N3(C) AS (SELECT 0 FROM N2 AS T1 CROSS JOIN N2 AS T2) -- 16 ROWS 
,N4(C) AS (SELECT 0 FROM N3 AS T1 CROSS JOIN N3 AS T2) -- 256 
ROWS 
,N5(C) AS (SELECT 0 FROM N4 AS T1 CROSS JOIN N4 AS T2) -- 65,536 
ROWS 
,IDs(ID) AS (SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) 
FROM N5) 
INSERT INTO dbo.Orders(OrderID, OrderDate) 
 SELECT ID, DATEADD(day,ID % 365, '2021-01-01') 
 FROM IDs;

Next, let’s run a query that returns the 200 most recent orders, as shown in
Listing 7-10.

Listing 7-10. Optimizing memory intensive queries: Test query 1

SELECT TOP 200 OrderID, OrderDate, Placeholder 
FROM dbo.Orders 
ORDER BY OrderDate DESC

The execution plan and memory grant metrics for the query are shown in
Figure 7-7. The query uses a 630MB memory grant, which is driven by a
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Sort TOP N operator. This operator caches rows in memory before
performing sorting.

It is worth noting that the Sort TOP N operator has internal and
undocumented optimizations for the cases when the TOP condition does not
exceed 100 rows. In that mode, the operator uses very little memory during
execution.

Figure 7-7. Optimizing memory intensive queries: Execution plan of the query

As I mentioned, you can often eliminate sorting with the proper indexing.
For example, let’s create the index with CREATE INDEX
IDX_Orders_OrderDate ON dbo.Orders(OrderDate) command and run the
query from Listing 7-10 again.

Figure 7-8 shows the new execution plan. The Sort operator is no longer
required, and query does not require a memory grant to support it.
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Figure 7-8. Optimizing memory intensive queries: Execution plan of the query after index has been
created

The size of the requested memory grant depends on the estimated number
of rows and the size of the rows the operator needs to process. For example,
if Query Optimizer expects to sort 10,000 rows of 100 bytes each, it would
need about 10MB to accommodate the data in memory. Both cardinality
estimation errors and row size estimation errors may lead to incorrect
memory grants.

Let’s look at the impact of cardinality estimation errors first and run another
query in Listing 7-11.

Listing 7-11. Optimizing memory intensive queries: Test query 2
SELECT TOP 200 OrderID, OrderDate, Placeholder 
FROM dbo.Orders 
WHERE OrderDate BETWEEN '2021-07-01' AND '2021-08-01' 
ORDER BY Placeholder;
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Figure 7-9 shows the partial execution plan for a query along with the
memory grant statistics. In this example, I just created the index and,
therefore, the statistics are up to date.

Figure 7-9. Optimizing memory intensive queries: Execution plan with up-to-date statistics

Now, let’s run the code from Listing 7-12. It disables automatic statistics
updates in the index and then deletes a large number of rows and clears the
plan cache.

Listing 7-12. Optimizing memory intensive queries: Outdating statistics

ALTER INDEX IDX_Orders_OrderDate ON dbo.Orders  
SET (STATISTICS_NORECOMPUTE = ON); 
DELETE FROM dbo.Orders 
WHERE OrderDate BETWEEN '2021-07-02' AND '2021-09-01'; 
DBCC FREEPROCCACHE;
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Now let’s repeat the test and run the query from Listing 7-11 again. As you
can see in Figure 7-10, cardinality estimation error led to an incorrect and
excessive memory grant for the query.

Figure 7-10. Optimizing memory intensive queries: Cardinality estimation error and memory grant

Let’s update the statistics with the UPDATE STATISTICS dbo.Orders
IDX_Orders_OrderDate WITH FULLSCAN command and run the query
again. As you can see in Figure 7-11, correct cardinality estimation led to a
significantly smaller memory grant for the query.
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Figure 7-11. Optimizing memory intensive queries: Memory grant after UPDATE STATISTICS
statement

Cardinality estimation errors are hard to deal with. Make sure that the
statistics are up to date and avoid any constructs that may affect cardinality
estimations (table variables, multi-statement table-value functions, etc.). In
some cases, you can split complex queries into the smaller ones and persist
intermediate results in temporary tables. This will lead to the overhead,
which I will discuss in Chapter 9; however, it may be the small price to pay
for the better execution plans in some cases.

Finally, let’s look at another factor that contributes to the size of memory
grant, which is the data row size. SQL Server calculates it based on data
types of the columns processed by operators. For fixed-length columns the
size is predefined. For example, tinyint will use one byte, int – 4 bytes, and
so on.

The estimations for variable-length columns, on the other hand, depend on
their length in table definition. SQL Server estimates them to be populated
by 50%. For example, the column defined as varchar(100) will have 50-
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byte estimation and nvarchar(200) will have 200 bytes as unicode
characters are using 2 bytes to store. Finally, columns defined as (MAX),
will have 4,000 bytes.

Do not select unnecessary columns and avoid using large fixed-length
(n)char(n) and binary(n) data types, as they increase row size estimations
and size of memory grants. You can see the impact of having a large
CHAR(8000) column in the previous examples. SQL Server estimated data
rows being 8,017 bytes each despite that Placeholder column stored NULL
value in all rows.

Let’s change the Placeholder column data type with the ALTER TABLE
dbo.Orders ALTER COLUMN Placeholder VARCHAR(32) command and
run the query from Listing 7-11 again. As you can see in Figure 7-12, it
changed the row size estimation from 8,017 to just 37 bytes, making the
memory grant significantly smaller.

Figure 7-12. Optimizing memory intensive queries: Memory grant with VARCHAR data type

Memory Grant Feedback
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The memory grant feedback feature, introduced in SQL Server 2017, allows
SQL Server to dynamically adjust memory grants for cached execution
plans based on memory usage from previous query executions. In SQL
Server 2017, memory grant feedback works only with the queries that
utilize batch-mode execution, which, in most cases, limits that to the
queries that work with columnstore indexes. In SQL Server 2019, memory
grant feedback was also extended to row-mode execution queries.

The memory grant feedback corrects both excessive and insufficient
memory grants. For excessive memory grants, recalculation is triggered if
the query uses less than 50% of granted memory. For insufficient grants,
recalculation is triggered in the event of tempdb spill (more on this in
Chapter 9). After recalculation, SQL Server updates the memory grant
parameters in the cached execution plan and uses the new values going
forward.

The batch-mode memory grant feedback is enabled in databases with
compatibility level 140 (SQL Server 2017) and above. In the row-mode, it
requires compatibility level 150 (SQL Server 2019) to be set. It also works
in Azure SQL Databases.

Both, row- and batch-mode feedbacks may be disabled through database
scope configuration with ALTER DATABASE SCOPED
CONFIGURATION command. Row mode feedback is controlled by the
ROW_MODE_MEMORY_GRANT_FEEDBACK setting. For batch-mode,
however, the settings are different between SQL Server 2017 and 2019.

In SQL Server 2017, you can disable batch-mode feedback by setting the
DISABLE_BATCH_MODE_MEMORY_GRANT_FEEDBACK to ON. In
SQL Server 2019, you should set
BATCH_MODE_MEMORY_GRANT_FEEDBACK to OFF.

You can also disable memory grant feedback on the query level with
DISABLE_BATCH_MODE_MEMORY_GRANT_FEEDBACK and
DISABLE_ROW_MODE_MEMORY_GRANT_FEEDBACK query hints.
It may be useful with parameter-sensitive plans that suffer from parameter
sniffing issues. Memory grant feedback should detect those conditions and
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stop adjusting memory grants; however, in some cases you may decide to
use hints to prevent any adjustments from happening.

Finally, adjusted memory grants are not persisted and are applied to cached
plans only. The changes will be lost if a plan is evicted from the cache or in
the event of a SQL Server restart or failover.

Controlling Memory Grant Size
SQL Server provides you two query hints- MIN_GRANT_PERCENT and
MAX_GRANT_PERCENT- that allow you to specify the minimum and
maximum percentage of workspace memory that can be granted to a query.
Unfortunately, those hints are tricky to deal with. You cannot specify
memory grant size in absolute units, such as KB or MB, and you must deal
with a percentage of available workspace memory, which is based on
hardware and SQL Server configuration.

Workspace memory can use up to 75% of target server memory. You can
track both of those metrics though the Maximum Workspace Memory (KB)
and Target Server Memory (KB) performance counters. By default, the
maximum size of the memory grant for individual queries is 25% of
workspace memory.

Let’s assume that you have the query shown in Listing 7-13.

Listing 7-13. Hypothetical query

SELECT Col1, Col2 
FROM T1 
ORDER BY Col3 
OPTION(MIN_GRANT_PERCENT=0.5,MAX_GRANT_PERCENT=3);

In a SQL Server instance with a target server memory of 100GB, the
maximum workspace memory will be set to 75GB by default. In that
configuration, the query would get at minimum 0.5% of 75GB, which is
0.375GB (384MB), and at maximum 3% of 75GB, which is 2.25GB, as the
memory grant. It is worth noting that the size may be adjusted based on
required memory that is needed to start the query.
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The situation becomes even more complicated when you are using
Resource Governor. It allows you to separate workspace memory across
multiple resource pools using MIN_MEMORY_PERCENT and
MAX_MEMORY_PERCENT resource pool settings. Moreover, you can
further limit memory grants of individual requests in a resource pool’s
workload group by setting
REQUEST_MAX_MEMORY_GRANT_PERCENT property.

As an example, assume that you have a resource pool with
MAX_MEMORY_PERCENT set to 60% and a workload group with
REQUEST_MAX_MEMORY_GRANT_PERCENT set to 10%. In that
configuration, the memory grant sizes for the query from Listing 7-13 will
be:

Minimum size: 75GB workspace memory * 60% resource pool
limit * 10% workload group limit * 0.5% query limit = 0.0225GB
(23.04MB)

Maximum size: 75GB workspace memory * 60% resource pool
limit * 10% workload group limit * 3% query limit = 0.135GB
(138.24MB)

While the Resource Governor and query hints allow you some control over
memory grant size, this solution is extremely fragile. Any changes that
impact memory configuration on SQL Server would lead to the different,
and often unexpected, memory grant calculations. Use it with extreme care
and only as the last resort when query optimization and memory grant
feedback did not help. (You can read more about Resource Governor in the
Microsoft documentation.)

In-Memory OLTP Memory Usage and
Troubleshooting
Our discussion about SQL Server memory management and
troubleshooting would not be complete without covering In-Memory OLTP.
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This technology relies on memory-optimized tables. The data in those
tables may be persisted on-disk for durability purposes; however, SQL
Server loads entire tables into memory on database startup.

This behavior is very different when compared to regular disk-based tables.
With them, SQL Server always loads the data to the buffer pool; however, it
does not need to load and cache the entire table. Only the active portion of
the data from the table needs to be in memory.

More importantly, in case of memory pressure, SQL Server can shrink the
size of the buffer pool and cache less data. It may impact performance of
the system by increasing the amount of physical I/O; nevertheless, the
system will be operational if it happens.

With In-Memory OLTP, on the other hand, SQL Server loads all memory-
optimized data into memory on database startup. The database will not
come online if the server does not have enough memory to store the data.
Moreover, if at any point of time SQL Server does not have enough
memory to support data growth, the memory-optimized tables become read-
only.

As the amount of memory consumed by In-Memory OLTP grows, it may
start to impact other SQL Server components, which would then have less
memory to utilize. In the Standard Edition of SQL Server, In-Memory
OLTP can utilize at most 32GB per database. In theory, the Enterprise
Editions of SQL Server 2016 and above do not have any limits. However,
in practice, In-Memory OLTP memory is limited to about 80% of the
Resource Governor resource pool memory, the database is bound to (or
DEFAULT resource pool if not bound).

You can use this behavior to limit the amount of memory available to In-
Memory OLTP. Listing 7-14 shows how to do that. The
sys.sp_xtp_bind_db_resource_pool and
sys.sp_xtp_unbind_db_resource_pool stored procedures bind and unbind
the database to and from the resource pool. You may need to restart the
database for the change to take effect.
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Obviously, be careful and remember that In-Memory OLTP data will
become read-only if you reach the limits.

Listing 7-14. Limiting amount of memory for In-Memory OLTP

CREATE RESOURCE POOL InMemoryDataPool 
WITH (MIN_MEMORY_PERCENT=40,MAX_MEMORY_PERCENT=40); 
ALTER RESOURCE GOVERNOR RECONFIGURE; 
EXEC sys.sp_xtp_bind_db_resource_pool 
 @database_name = 'InMemoryOLTPDemo' 
,@pool_name = 'InMemoryDataPool'; 
 
-- You need to take DB offline and bring it back online  
-- for the changes to take effect 
ALTER DATABASE MyDB SET OFFLINE; 
ALTER DATABASE MyDB SET ONLINE;

You can monitor how much memory is consumed by In-Memory OLTP
through MEMORYCLERK_XTP clerk memory consumption. In case of
high memory usage, you can analyze the per-object memory consumption
with the sys.dm_db_xtp_table_memory_stats view. Listing 7-15 shows you
the code to do that. You can also use the Memory Usage by Memory
Optimized Objects report in SSMS that provides similar output.

Listing 7-13. Analyzing memory consumption of memory-optimized tables

SELECT 
 ms.object_id 
,s.name + '.' + t.name AS [table] 
,ms.memory_allocated_for_table_kb 
,ms.memory_used_by_table_kb 
,ms.memory_allocated_for_indexes_kb 
,ms.memory_used_by_indexes_kb 
FROM sys.dm_db_xtp_table_memory_stats ms WITH (NOLOCK) 
 LEFT OUTER JOIN sys.tables t WITH (NOLOCK) ON 
 ms.object_id = t.object_id 
 LEFT OUTER JOIN sys.schemas s WITH (NOLOCK) ON  
 t.schema_id = s.schema_id 
ORDER BY 
 ms.memory_allocated_for_table_kb DESC;
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Analyze the amount of data stored in large memory-optimized tables. In
most cases, you should not retain a lot of historical data in memory – it is
better to partition it between memory-optimized and disk-based tables.

Pay attention to the schema of the tables and (n)varchar(max) and
varbinary(max) columns. In-Memory OLTP works very differently than
disk-based tables. LOB columns introduce significant storage and
performance overhead even when they are empty.

Most importantly, you need to make sure that the system does not have
long-running or run-away transactions. In-Memory OLTP uses row-
versioning. Data modifications generate the new versions of data rows that
consume memory. Old versions and deleted data rows are eventually
deallocated by garbage collection process; however, it will not process the
data generated after start time of the oldest active transaction. The memory
usage will continue to grow, and it eventually may put the system down.

Listing 7-16 shows the code that detects the ten oldest In-Memory OLTP
transactions. You can use it for troubleshooting and you can build
monitoring and alerting around it.

Listing 7-16. Detecting 10 oldest In-Memory OLTP transactions

SELECT TOP 10 
 t.session_id 
,t.transaction_id 
,t.begin_tsn 
,t.end_tsn 
,t.state_desc 
,t.result_desc 
,SUBSTRING( 
 qt.text 
,er.statement_start_offset / 2 + 1 
,(CASE er.statement_end_offset 
 WHEN -1 THEN datalength(qt.text) 
 ELSE er.statement_end_offset 
 END - er.statement_start_offset 
 ) / 2 +1 
 ) AS SQL 
FROM  
 sys.dm_db_xtp_transactions t WITH (NOLOCK) 
 LEFT OUTER JOIN sys.dm_exec_requests er ON 
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 t.session_id = er.session_id 
 CROSS APPLY sys.dm_exec_sql_text(er.sql_handle) qt 
WHERE 
 t.state IN (0,3) /* ACTIVE/VALIDATING */ 
ORDER BY  
 t.begin_tsn 
OPTION (RECOMPILE, MAXDOP 1);

In-Memory OLTP is a great technology that can significantly improve the
throughput of OLTP systems. It is not, however, a set-it-and-forget-it type
of technology. It requires proper system and database design and adequate
monitoring in production. Consider reading my book Expert SQL Server In-
Memory OLTP (2nd edition, Apress, 2017) if you want to learn more.

Summary
SQL Server is a memory-intensive application that may consume hundreds
of gigabytes or terabytes of memory. This is completely normal and it can
help improve SQL Server performance. Nevertheless, it is important to
properly configure server memory, especially in non-dedicated
environments.

Set and tune the Maximum Server Memory setting, leaving enough memory
for the OS and other applications. Consider granting the Lock Pages In
Memory privilege to SQL Server accounts; however, remember that it may
lead to system stability issues if the system is not properly configured.

You may also consider enabling Large Page Allocations on servers with a
large amount of memory. This feature does not work well with columnstore
indexes in SQL Server versions prior to 2019.

You can analyze the current memory usage by looking at the memory
consumption of various memory clerks. Detect anomalies and address root-
causes of the issues.

Monitor the status of memory grants and presence of
RESOURCE_SEMAPHORE waits. Optimize queries with high memory
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grants when possible. Enable memory grant feedback feature if it is
available in your version of SQL Server.

In the next chapter, I will talk about the QL Server concurrency model and
explain how to troubleshoot blocking issues and deadlocks.

Troubleshooting Checklist
Check and adjust memory configuration.

Analyze memory usage with sys.dm_os_memory_clerks view. Address
possible issues.

Analyze plan cache memory usage.

Analyze memory usage from single-use ad-hoc execution plans.

Check for RESOURCE_SEMAPHORE waits. Detect and optimize for the
most memory-intensive queries.
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Chapter 8. Troubleshooting
TempDB Usage and
Performance

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 9th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at dmitri@aboutsqlserver.com.

The tempdb is the system database, which is shared across all user and
system sessions. It stores user-created and internal temporary objects and
data, and is used by many processes. High tempdb performance and
throughput are essential for good server performance.

I will start this chapter with an overview of tempdb consumers and usage
patterns and share several best practices related to the usages of temporary
objects. Next, I will show how to diagnose and address common tempdb
issues. Finally, I’ll provide you with several tempdb configuration tips.

Temporary Objects: Usage and Best
Practices
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Tempdb performance tuning is a complex topic. I usually like to start with
an overview of usage patterns. After all, tempdb is just another database,
and reducing its load usually improves its throughput. There are some
internal optimizations in tempdb behavior, which I will discuss later in that
chapter. But for all practical purposes, you can consider tempdb similar to
other user databases.

The tempdb database stores temporary objects created by users, internal
record sets generated during query executions, the version store, and a few
other objects. You can look at how much space different object types are
using by running the code from Listing 9-1.

Listing 9-1. Tempdb space usage

SELECT 
    CONVERT(DECIMAL(12,3),    
SUM(user_object_reserved_page_count) / 128.)  
        AS [User Objects (MB)] 
    ,CONVERT(DECIMAL(12,3), 
        SUM(internal_object_reserved_page_count) / 128. 
    ) AS [Internal Objects (MB)] 
    ,CONVERT(DECIMAL(12,3), 
        SUM(version_store_reserved_page_count) / 128. 
    ) AS [Version Store (MB)] 
    ,CONVERT(DECIMAL(12,3), 
        SUM(unallocated_extent_page_count) / 128. 
    ) AS [Free Space (MB)] 
FROM 
    tempdb.sys.dm_db_file_space_usage WITH (NOLOCK);

Let’s start our discussion with the first group in that list – objects created by
users.

Temporary Tables and Table Variables
Temporary tables and table variables store short-lived information and
intermediate results during data processing. For most part, temporary tables
behave similarly to regular user tables. They don’t support triggers and
cannot be included in views; however, they support indexes and constraints

www.datasense.ir



and can be altered like regular tables. Altering them is not a good idea,
though – I’ll explain why later in the chapter.

There are two kind of temporary tables – global and local. They differ in
lifespan and visibility. Global temporary tables are created with names that
start with two hash symbols (## ) and are visible to all sessions. They are
dropped when the session in which they were created disconnects and other
sessions stop referencing them.

You can use global temporary tables to store and share temporary data
between sessions. This approach, however, is fragile and prone to errors.
For example, if the session that created the global temporary table loses
connection to the database, the table may be dropped at an unpredictable
time. You may get better results by creating regular tables in tempdb
instead.

Local temporary tables are named starting with one hash symbol (#) and
are visible only in the session in which they were created. When multiple
sessions simultaneously create local temporary tables with the same name,
every session will have its own instance of the table.

Local temporary tables are visible in the module in which they were created
and in all other modules called from that module. For example, if you open
a connection and create a temporary table in that session, the table will be
visible everywhere in that session and live while the session is open.
Alternatively, if you create a temporary table in the stored procedure, it will
be visible in that stored procedure and all other T-SQL modules or dynamic
SQL called from there. It will be dropped automatically when that stored
procedure completes.

You can use this behavior to pass data between T-SQL modules.
Nevertheless, it has a couple of downsides: First, it increases the number of
compilations and CPU load. SQL Server will need to recompile the inner
(called) module as it does not know anything about external table until the
module was called.

Second, this approach is also extremely fragile. Any changes in temporary
table schema in outer (calling) modules can break the inner ones. The

www.datasense.ir



situation will become even worse if the inner modules are executed by
multiple callers – it quickly gets very hard to support. Use this approach
with extreme care and only when absolutely necessary.

In contrast – table variables are visible only in the module where they were
defined. You can pass them as parameters to other modules (more about this
later in this chapter).

Despite the old myth, table variables are not in-memory objects. They use
tempdb similarly to temporary tables. They introduce less overhead than
temporary tables; however, that benefit comes with a major limitation: They
don’t support indexes, except for primary key and unique constraints. More
importantly, table variables do not maintain statistics on those constraints.
This can lead to significant cardinality estimation errors and highly
inefficient execution plans.

Let’s look at the example in Listing 9-2. Here you’ll create a temporary
table and populate it with some data.

Listing 9-2. Cardinality estimations: Temporary table creation

CREATE TABLE #TT(ID INT NOT NULL PRIMARY KEY); 
;WITH N1(C) AS (SELECT 0 UNION ALL SELECT 0) -- 2 rows 
,N2(C) AS (SELECT 0 FROM N1 AS T1  CROSS JOIN N1 AS T2) -- 4 rows 
,N3(C) AS (SELECT 0 FROM N2 AS T1  CROSS JOIN N2 AS T2) -- 16 
rows 
,N4(C) AS (SELECT 0 FROM N3 AS T1  CROSS JOIN N3 AS T2) -- 256 
rows 
,IDs(ID) AS (SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) 
FROM N4) 
INSERT INTO #TT(ID) 
    SELECT ID FROM IDs; 

As the next step, run the code from Listing 9-3. This will select the data
from the temporary table and table variable and compare cardinality
estimations in the queries. (Note that I am running that demo in the
database with a compatibility level of 140 in SQL Server 2017. It will
behave slightly differently at compatibility level 150 or later, as in SQL
Server 2019 – I will cover this shortly.)
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Listing 9-3. Cardinality estimations: Selecting data from temporary objects

DECLARE  
 @TTV TABLE(ID INT NOT NULL PRIMARY KEY); 
INSERT INTO @TTV(ID) 
 SELECT ID FROM #TT; 
SELECT COUNT(*) FROM #TT; 
SELECT COUNT(*) FROM @TTV; 
SELECT COUNT(*) FROM @TTV OPTION (RECOMPILE);

Figure 9-1 shows cardinality estimations for SELECT queries. As you can
see, the estimation is correct for the temporary table. However, unless you
are using a statement-level recompile, SQL Server estimates that a table
variable has only one row. Cardinality estimation errors can progress
quickly through the execution plan, which means that using table variables
can lead to highly inefficient plans.
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Figure 8-1. Cardinality Estimations – Temporary Tables vs. Table Variables

A statement-level recompile provides Query Optimizer information about
the total number of rows (note, however, that table variables do not keep
statistics or information about data distribution).

Let’s repeat the test by adding WHERE clause to the queries, as shown in
Listing 9-4. All rows in the tables have positive ID values.

Listing 9-4. Cardinality estimations: Selecting data with WHERE clause

DECLARE  
 @TTV TABLE(ID INT NOT NULL PRIMARY KEY); 
INSERT INTO @TTV(ID) 
 SELECT ID FROM #TT; 
SELECT COUNT(*) FROM #TT WHERE ID > 0; 
SELECT COUNT(*) FROM @TTV WHERE ID > 0; 
SELECT COUNT(*) FROM @TTV WHERE ID > 0 OPTION (RECOMPILE);

Figure 9-2 shows the cardinality estimations for the scenario in Listing 9-4.
Temporary tables maintain statistics on indexes, so SQL Server was able to
estimate the number of rows in the first SELECT correctly.

As before, without a statement-level recompile, SQL Server always
assumes that the table variable has only a single row. But even with a
statement-level recompile, the estimations are way off. There are no
statistics, and SQL Server assumes that the greater-than (>) operator will
filter out about 70% of the rows from the table, which is completely
incorrect.
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Figure 8-2. Cardinality Estimations – Table Variables and WHERE clause

If you run the scripts in a database with compatibility level 150 or above
(SQL Server 2019), you’ll get slightly different estimations in the second
query. SQL Server defers compiling statements with table variables and
uses the number of rows there at the moment of compilation, caching the
generated plan afterwards. Nevertheless, there are still no statistics, and the
estimation will not be correct when a WHERE clause is used. Remember
this behavior.

WARNING BOX

WARNING
Table variables are not a good choice when cardinality estimation errors could impact
execution plans—for example, if they store large amounts of data and participate in
joins with other tables. In most cases, the Query Optimizer will choose a loop join,
which is inefficient with large inputs. Use temporary tables instead – they are a much
safer choice than table variables. In many cases, simply switching table variables to
temporary tables has improved my query performance significantly.

Do not forget to index temporary tables properly when you work with them.
All of the optimization rules you learned in Chapter 5 apply, whether you’re
dealing with regular or temporary tables.

Temporary tables are a great tool to improve cardinality estimations and
optimize complex queries. You can split a complex query into a few simpler
ones and store the intermediate results in a temporary table. Smaller queries
are easier to optimize, especially with up-to-date statistics generated in
temporary tables.

As usual, this approach comes with a downside: the overhead of creating
and populating temporary tables. Figure 9-3 gives a high-level overview of
that process. With one exception, which I’ll mention, the same process also
applies to table variables.
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Figure 8-3. Using temporary table to store intermediate data

Let’s discuss what happens during the process pictured in Figure 9-3.

Step 1: O bject Creation

When SQL Server creates a temporary table or table variable, it makes
several modifications in the system catalogs and allocation map pages
in tempdb. This is a very fast process; however, it may become a source
of contention when multiple sessions are updating system pages
simultaneously.

This condition can be reduced by proper tempdb configuration, which I
will cover later in this chapter. I’ll also explain how to properly
diagnose it in this and the next chapter of the book.

Step 2: Populating the temporary object

Next, SQL Server populates the temporary object by performing logical
or physical reads from the source tables.

Step 3: Pages allocation

SQL Server allocates data pages for the new object in the buffer pool
and modifies them, marking as dirty.

Step 4: Writing log records

For temporary tables, SQL Server logs the above actions in the tempdb
transaction log.

Changes in table variables are not logged: they are not transaction-
aware and a ROLLBACK operation would not undo any actions against
them. (This is another performance advantage they offer over temporary
tables.)

Step 5: Writing data pages

In a separate, asynchronous process, dirty data pages will eventually be
written to the data files. This might even be done after the object is
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dropped from the database.

Data pages that belong to temporary objects stay in the buffer pool and
behave similarly to data pages from the regular tables. They consume
buffer pool space and reduce the amount of memory needed to cache the
data from the regular tables. You can use Listing 7-4 to analyze tempdb
buffer pool usage.

Step 6: Object deletion

Eventually, the temporary objects need to be deallocated. While this
operation is relatively light, it also modifies the system catalogs and
may lead to contention in busy systems.

As you can see, creating and populating temporary objects can be
expensive, especially when you’re dealing with large amounts of data.
While temporary tables are a great query optimization tool for reasonably
small intermediate results, it is usually not a good idea to store millions of
rows in them.

Moreover, reading the data is significantly less expensive than writing it. It
may be cheaper and faster to read large amounts of data from the regular
table a few times than to write significant portions of it into the temporary
table.

There are no hard thresholds for when you should or should not use
temporary tables. It depends on your workload, the amount of data, your
hardware configuration, and what problems you are trying to solve. Just
remember the overhead they introduce and make sure it doesn’t outweigh
the benefits of using temporary tables.

Temporary Object Caching
I mentioned just now that creating and deallocating temporary objects
requires SQL Server to modify system catalogs and allocation map pages in
tempdb. One of SQL Server’s optimizations, temporary object caching,
helps to reduce that overhead.

www.datasense.ir



The name of this feature is a bit confusing. It relates to caching temporary
objects’ allocation pages, not data pages. When you use temporary object
caching, instead of dropping the table, SQL Server truncates it. It keeps two
pages per index pre-allocated: one IAM and one data page. The next time
the table is created, SQL Server reuses these pages, which helps reduce the
number of modifications required in the allocation map pages.

Let’s look at Listing 9-5 and define the stored procedure that creates and
drops the temporary table.

Listing 9-5. Temporary object caching: Stored procedure

CREATE PROC dbo.TempTableCaching 
AS 
    CREATE TABLE #T(C INT NOT NULL PRIMARY KEY); 
    DROP TABLE #T;

Next, run the stored procedure and examine the transaction log records it
generates. You can see the code in Listing 9-6.

Listing 9-6. Temporary object caching: Running stored procedure

CHECKPOINT; 
GO 
  
EXEC dbo.TempTableCaching; 
  
SELECT  
    Operation, Context, AllocUnitName 
    ,[Transaction Name], [Description] 
FROM  
    tempdb.sys.fn_dblog(null, null);

You can see the output of the code in Figure 9-4. Here, the first stored
procedure call produced 45 log records, most related to updating the
allocation map pages and system tables while creating the temporary table.
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Figure 8-4. Temporary object caching: Log records after the first call

The situation changes when you run the code from Listing 9-6 a second
time. Now, when the temporary table is cached, table creation introduces
just a few log records, all of which are against the system table, with no
allocation map pages involved. You can see this in Figure 9-5.
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Figure 8-5. Temporary object caching: Log records after the second call

Temporary object caching is enabled by default for all temporary objects
created in stored procedures and triggers (session-level objects are not
cached). However, there are a few conditions:

The table needs to be smaller than 8MB. Large tables are not
cached.

There can be no DDL statements that change the table structure.
Any schema modification, with exception of DROP TABLE, will
prevent temporary object caching. However, you can create
indexes on the table and SQL Server will cache them.

No named constraints can be defined in the table. Unnamed
constraints will not prevent caching.

Consider these guidelines as you write your code. Temporary object
caching is a useful performance feature, and you will benefit from it.
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Table-Valued Parameters
SQL Server allows you to define table types in the database. When you
declare the variable of the table type in the code, it works the same way as
table variables. You can also pass the variables of the table types as
parameters to T-SQL modules. Those parameters are called table-valued
parameters.

Table-valued parameters are implemented as table variables under the hood
and inherit all their benefits and limitations, most notable around missing
statistics and cardinality estimation errors they may introduce. In addition,
those parameters are read-only. You cannot insert, update, or delete the data
from table-valued parameters in the modules they passed to.

Listing 9-7 shows how you can use table-valued parameters. (This is just an
example of a possible usage scenario, not a reference implementation for
any use cases!) It also demonstrates that table variables are not transaction-
aware. You can use them to pass the information outside of the transaction
you are rolling back.

Listing 9-7. Using table-valued parameters

CREATE TYPE dbo.tvpTransfers AS TABLE 
( 
    FromAccount BIGINT NOT NULL, 
    ToAccount BIGINT NOT NULL, 
    ADate DATETIME2(0) NOT NULL, 
    Amount MONEY NOT NULL, 
    PRIMARY KEY(FromAccount,ToAccount) 
); 
GO 
  
CREATE PROC dbo.ProcessRejectedTransfers 
( 
    @RejectedTransfers dbo.tvpTransfers READONLY 
) 
AS 
    SELECT FromAccount, ToAccount, ADate, Amount 
    FROM @RejectedTransfers; 
GO 
  
CREATE PROC dbo.DoTransfers 
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( 
    @Transfers dbo.tvpTransfers READONLY 
) 
AS 
    DECLARE  
        @RejectedTransfers dbo.tvpTransfers 
  
    BEGIN TRAN 
        INSERT INTO @RejectedTransfers 
        (FromAccount, ToAccount, ADate, Amount) 
            SELECT FromAccount, ToAccount, ADate, Amount 
            FROM @Transfers 
            WHERE Amount > 10000; 
        /* ... */ 
    ROLLBACK -- Table variables are not transaction-aware. 
    EXEC sp_executesql 
        N’EXEC dbo.ProcessRejectedTransfers @Transfers;’ 
        ,N’@Transfers dbo.tvpTransfers READONLY’ 
        ,@Transfers = @RejectedTransfers; 
GO 
  
DECLARE  
    @Transfers dbo.tvpTransfers 
  
INSERT INTO @Transfers 
    (FromAccount, ToAccount, ADate, Amount) 
VALUES 
    (1,2,'2021-08-01',100) 
    ,(3,4,'2021-08-02',15000) 
    ,(5,6,'2021-08-03',20000); 
  
EXEC dbo.DoTransfers @Transfers;

Table-valued parameters are one of the fastest ways to pass a batch of rows
from a client application to a T-SQL routine. They are an order of
magnitude faster than separate DML statements and, in some cases, can
even outperform bulk operations. Look for opportunities to use them – they
can provide significant performance improvements.
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NOTE
I am including the demo application that compares performance of different techniques
to pass a batch of rows from client application to the database in companion materials of
the book.

Regular Tables in TempDb and Transaction Logging
You can create and use regular tables in tempdb. Those tables are visible to
all sessions and behave the same way as in the other databases. Obviously,
the system needs to be ready in case those tables disappear during SQL
Server restarts, when tempdb is recreated. You have two options: you can
recreate them by defining them in a model database or you can use startup
stored procedures.

Tempdb can be a good choice as the staging area for ETL processes in cases
where you need to load and process a large amount of data and the process
does not have High Availability requirements. Tempdb uses the SIMPLE
recovery model and more efficient transaction logging. It does not need to
support crash recovery and, therefore, does not need to keep the REDO
portion of transaction log record, which is what allows SQL Server to
reapply changes from committed transactions if it crashes before the
checkpoint.

Transaction logging of local temporary tables is even more efficient. Those
tables are visible in the scope of a single session, which allows SQL Server
to use minimally logged operations in more cases (I’ll cover this in more
detail in Chapter 11). You can use use minimally logged operations to
improve ETL performance even further. Remember, however, that
temporary tables will disappear if the client loses connection to the
database.

Table 9-1 shows examples of when operations are minimally logged for
regular and temporary tables in tempdb. You can use it as a reference to
speed up ETL processes and initial data load to the tables. As I stated
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earlier, table variables do not use logging at all; however, they open the
door to cardinality estimation errors during query optimization.
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Operation Minimally logged?

 
            
SELECT INTO 
dbo.RegularTable
 SELECT INTO 
#tempTable

Yes—although I don’t recommend this pattern, because it does not create 
clustered indexes in the table

 
            
 
                INSERT INTO dbo.RegularTable WITH (TABLOCK) SELECT  
              

Yes

 
            
 
                INSERT INTO dbo.RegularTable SELECT 
              

No

 
            
 
                INSERT INTO #tempTable SELECT 

Yes
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Using tempdb for ETL processes may improve their performance and
reduce the load on the server. In many cases, however, you can achieve
even better results by using durable or non-durable memory-optimized
tables and In-Memory OLTP. Consider them as options, but test
implementation carefully: In-Memory OLTP behaves differently than the
classic Storage Engine.

Internal TempDB Consumers
In addition to objects created by users, SQL Server uses tempdb to store
internal objects. The two most common space consumers in that group are
version store and internal row sets, which are generated by Sort, Hash and
Exchange operations that spill over to tempdb.

Let’s look at both in detail.

Version Store
Several SQL Server features rely on row versioning. In addition to
optimistic isolation levels, such as RCSI and SNAPSHOT, row versioning
is used by online index rebuild, triggers and Multiple Active Result Sets
(MARS). As you learned in chapter 8, the old versions of the rows are
stored in tempdb version store.

Figure 9-6 shows version store behavior with a large row-versioning
transaction running in the system. You can see the growth of version store
size (Version Store Size (KB) performance counter), which triggers tempdb
auto-growth events.

In this case, SQL Server cleared up the version store after the transaction
completed. It took some time, however, for clean-up to occur. The clean-up
process is asynchronous and runs on a schedule.
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Figure 8-6. Version store growth and clean-up

Version store growth is one of the common reasons of excessive growth of
the tempdb. SQL Server does not clean up the version store beyond the
starting point of the oldest active row-versioning transaction. Uncommitted
run-away transactions can lead to extensive version store and tempdb
growth, even if tempdb does not generate row versions by itself.

Listing 9-8 shows you how to detect the five oldest row-versioning
transactions using sys.dm_tran_active_snapshot_database_transactions
view. You can kill the session that prevents clean-up of the version store in
case of emergency.

Listing 9-8. Detecting the five oldest row-versioning transactions

SELECT TOP 5 
    at.transaction_id 
    ,at.elapsed_time_seconds 
    ,at.session_id 
    ,s.login_time 
    ,s.login_name 
    ,s.host_name 
    ,s.program_name 
    ,s.last_request_start_time 
    ,s.last_request_end_time 
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    ,er.status 
    ,er.wait_type 
    ,er.wait_time 
    ,er.blocking_session_id 
    ,er.last_wait_type 
    ,st.text AS [SQL] 
FROM 
    sys.dm_tran_active_snapshot_database_transactions at WITH 
(NOLOCK) 
        JOIN sys.dm_exec_sessions s WITH (NOLOCK) on  
            at.session_id = s.session_id 
        LEFT JOIN sys.dm_exec_requests er WITH (NOLOCK) on 
            at.session_id = er.session_id 
        CROSS APPLY 
            sys.dm_exec_sql_text(er.sql_handle) st 
ORDER BY 
    at.elapsed_time_seconds DESC;

NOTE
Long-running transactions on readable secondaries in Availability Groups can defer
version store clean-up. I’ll discuss this in Chapter 12.

There are several performance counters in the Transactions performance
object that you can use to monitor version store behavior:

Version Store Size (KB)

Current size of the version store.

Version Generation rate (KB/s)

Growth rate of the version store.

Version Cleanup rate (KB/s)

Cleanup rate of the version store.

Longest Transaction Running Time

Duration in seconds of the oldest active transaction that is using row
versioning.
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Free Space in tempdb (KB)

Amount of available space in tempdb. While this counter is not related
to the version store, you can use it for general tempdb monitoring.

Listing 9-9 shows the queries that you can use to analyze version store
usage per database. This may be useful when you troubleshoot excessive
version-store growth on servers that host multiple databases.

The first query would work on SQL Server 2016 and above. The second
can be used on the older versions of SQL Server. It is more resource
intensive, however, and provides slightly less accurate results.

Listing 9-9. Version store usage per database

-- SQL Server 2016 SP2 and above 
SELECT 
    DB_NAME(database_id) AS [DB] 
    ,database_id 
    ,reserved_page_count 
    ,CONVERT(DECIMAL(12,3),reserved_space_kb / 1024.) 
        AS [Reserved Space (MB)] 
FROM  
    sys.dm_tran_version_store_space_usage WITH (NOLOCK) 
OPTION (RECOMPILE); 
  
-- SQL Server 2014 and below. Less accurate.  
SELECT  
    DB_NAME(database_id) AS [DB] 
    ,database_id 
    ,CONVERT(DECIMAL(12,3), 
        SUM(record_length_first_part_in_bytes +  
            record_length_second_part_in_bytes) / 1024. / 1024. 
    ) AS [Version Store (MB)] 
FROM 
    sys.dm_tran_version_store WITH (NOLOCK) 
GROUP BY 
    database_id 
OPTION (RECOMPILE, MAXDOP 1);

Version store is a key component for multiple SQL Server features. Monitor
its size and behavior, especially looking for long-running and runaway row-
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versioning transactions.

Spills
As you remember from Chapter 7, Sort, Hash and Exchange operators
require memory to store the data. When query memory grant is insufficient,
they spill data to tempdb and perform the operation there. The spills impact
query performance, since in-database data access is significantly slower
than doing the operation in memory. It also adds to the tempdb load and
may increase its size.

In recent versions of SQL Server, memory grant feedback can reduce the
number of spills. However, it does not solve the problem completely. You
may need to detect and optimize queries that have incorrect or excessive
memory grants, using the techniques discussed in Chapter 7.

You can detect queries that spill to tempdb by using sort_warning,
hash_warning and exchange_spill xEvents. Listing 9-10 shows the code
that creates an xEvent session and the query you can use to parse the
results.

Listing 9-10. Using xEvents to detect queries that spill to tempdb

CREATE EVENT SESSION [Spills]  
ON SERVER  
ADD EVENT sqlserver.hash_warning 
( 
    ACTION 
    ( 
        sqlserver.database_id 
        ,sqlserver.plan_handle 
        ,sqlserver.session_id 
        ,sqlserver.sql_text 
        ,sqlserver.query_hash 
        ,sqlserver.query_plan_hash 
    ) 
    WHERE ([sqlserver].[is_system]=0) 
), 
ADD EVENT sqlserver.sort_warning 
( 
    ACTION 
    ( 
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        sqlserver.database_id 
        ,sqlserver.plan_handle 
        ,sqlserver.session_id 
        ,sqlserver.sql_text 
        ,sqlserver.query_hash 
        ,sqlserver.query_plan_hash 
    ) 
    WHERE ([sqlserver].[is_system]=0) 
),  
ADD EVENT sqlserver.exchange_spill 
( 
    ACTION 
    ( 
        sqlserver.database_id 
        ,sqlserver.plan_handle 
        ,sqlserver.session_id 
        ,sqlserver.sql_text 
        ,sqlserver.query_hash 
        ,sqlserver.query_plan_hash 
    ) 
    WHERE ([sqlserver].[is_system]=0) 
) 
ADD TARGET package0.ring_buffer; 
GO 
  
-- Analyze the results 
DROP TABLE IF EXISTS #tmpXML; 
CREATE TABLE #tmpXML 
( 
    EventTime DATETIME2(7) NOT NULL, 
    [Event] XML 
); 
DECLARE  
    @TargetData XML; 
SELECT   
    @TargetData = CONVERT(XML,st.target_data)  
FROM   
    sys.dm_xe_sessions s WITH (NOLOCK)   
        JOIN sys.dm_xe_session_targets st WITH(NOLOCK) ON  
            s.address = st.event_session_address  
WHERE   
    s.name = 'Spills' and st.target_name = 'ring_buffer'; 
INSERT INTO #tmpXML(EventTime, [Event]) 
    SELECT  
        t.e.value('@timestamp','datetime'), t.e.query('.')  
    FROM  
        @TargetData.nodes('/RingBufferTarget/event') AS t(e);  
;WITH EventInfo 
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AS 
( 
    SELECT 
        t.EventTime 
        ,t.[Event].value('/event[1]/@name','sysname') AS [Event] 
        ,t.
[Event].value('(/event[1]/action[@name="session_id"]/value/text()
)[1]' 
            ,'smallint') AS [Session] 
        ,t.
[Event].value('(/event[1]/action[@name="database_id"]/value/text(
))[1]' 
            ,'smallint') AS [DB] 
        ,t.
[Event].value('(/event[1]/action[@name="sql_text"]/value/text())
[1]' 
            ,'nvarchar(max)') AS [SQL] 
        ,t.[Event] 
            
.value('(/event[1]/data[@name="granted_memory_kb"]/value/text())
[1]' 
                ,'bigint') AS [Granted Memory (KB)] 
        ,t.[Event] 
            
.value('(/event[1]/data[@name="used_memory_kb"]/value/text())[1]' 
                ,'bigint') AS [Used Memory (KB)] 
        ,t.[Event] 
  
.value('xs:hexBinary((/event[1]/action[@name="plan_handle"]/value
/text())[1])' 
                ,'varbinary(64)') AS [PlanHandle] 
        ,t.
[Event].value('(/event[1]/action[@name="query_hash"]/value/text()
)[1]' 
            ,'nvarchar(64)') AS [QueryHash] 
        ,t.[Event] 
            
.value('(/event[1]/action[@name="query_plan_hash"]/value/text())
[1]' 
                ,'nvarchar(64)') AS [QueryPlanHash] 
FROM 
    #tmpXML t 
) 
SELECT 
    ei.*, qp.query_plan 
FROM 
    EventInfo ei  
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        OUTER APPLY sys.dm_exec_query_plan(ei.PlanHandle) qp 
OPTION (RECOMPILE, MAXDOP 1); 

You can group the results by query hash or plan hash columns to find the
queries that spill most often.

SSMS and other tools display warnings about spills in the execution plans.
Figure 9-7 shows an example in SSMS. Do not ignore these warnings when
you tune your queries.

Figure 8-7. Sort warning in SSMS

Unfortunately, it is impossible to eliminate all spills. Make sure, however,
that critical queries do not spill, and evaluate the impact of any spills on
tempdb performance.

Common TempDB Issues
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Issues with tempdb performance and throughput will affect the entire
system. They degrade query performance, slow down T-SQL code, and
introduce other issues and side effects. Unfortunately, their impact is not
easy to estimate.

I usually start my analysis by looking at the general throughput and
latency/stall metrics of tempdb database files using the
sys.dm_io_virtual_file_stats view and the code from Listing 3-1. High read
and write throughput indicates heavy tempdb usage. High latency may
indicate issues with tempdb configuration (more on that later) or that the
disk subsystem is overloaded, potentially due to high throughput.

When I see high tempdb throughput, I try to pinpoint its root cause. I look
at what consumes space in tempdb by running the query from Listing 9-1.
The space usage of each type of object does not always correlate with the
throughput it generates, but I can often get useful information by analyzing
trends in how space is used over time.

I can estimate version store throughput by looking at the Version
Generation rate and Version Cleanup rate performance counters. Usually,
there is little you can do about load it generates. The “solution” of
switching off optimistic isolation levels is rarely appropriate. Although,
remember that other SQL Server features—such as triggers, online index
rebuild, and MARS—use row versioning; see if you can find any
opportunities to reduce the load they generate.

There are two counters in General Statistics performance objects that help
me analyze the usage of user-created temporary objects.

Temp Tables Creation Rate

Shows the count of temporary tables and table variables created per
second

Active Temp Tables

Provides the number of temporary tables and table variables currently in
use
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High numbers in those counters indicate excessive usage of temporary
objects, especially when you also see high space usage of user objects in the
output from Listing 9-1. You might look for opportunities to reduce usage
of temporary objects: for example, by optimizing a few frequently executed
stored procedures.

You can look at the following performance counters to track how often
some internal objects are created in tempdb:

SQLServer:Access Methods\ Worktables Created/sec

Provides the count of internal worktables SQL Server created to support
spools, cursors, and LOB and XML variables

SQLServer:Cursor Manager By Type\Cursor worktable usage

Number of worktables used by cursors

Unfortunately, SQL Server does not provide performance counters to track
spills. However, I can use an xEvent session to capture sort_warning,
hash_warning and exchange_spill events using the event_counter target as
shown in Listing 9-11.

Listing 9-11. Counting the number of spills

CREATE EVENT SESSION [Spill_Count]  
ON SERVER  
ADD EVENT sqlserver.exchange_spill, 
ADD EVENT sqlserver.hash_warning, 
ADD EVENT sqlserver.sort_warning 
ADD TARGET package0.event_counter; 
  
DECLARE  
    @TargetData XML 
SELECT  
    @TargetData = CONVERT(XML,st.target_data)  
FROM  
    sys.dm_xe_sessions s WITH (NOLOCK)  
        JOIN sys.dm_xe_session_targets st WITH(NOLOCK) ON 
            s.address = st.event_session_address 
WHERE  
    s.name = 'Spill Count' and st.target_name = 'event_counter'; 
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;WITH EventInfo 
AS 
( 
    SELECT 
        t.e.value('@name','sysname') AS [Event]  
        ,t.e.value('@count','bigint') AS [Count]  
    FROM 
        @TargetData.nodes 
             
('/CounterTarget/Packages/Package[@name="sqlserver"]/Event')  
                AS t(e) 
)  
SELECT [Event], [Count]  
FROM EventInfo 
OPTION (RECOMPILE, MAXDOP 1); 

You can achieve some benefits by optimizing queries that spill to tempdb
and reducing cursor usage. Focus on the most critical and frequently
executed queries and stored procedures.

That said, you can often get better ROI by scaling up your hardware. It is
cheap nowadays. However, there are a couple of other common problems
with tempdb that you need to be aware of.

System Pages Contention
Tempdb is a busy database – multiple sessions create and drop objects there
all the time. During those processes, sessions make several changes in the
system pages that track object allocations and metadata.

To protect the integrity of those pages, SQL Server serializes access to them
– only one session may make modifications at any given time. This can lead
to contention and reduce tempdb throughput in busy systems.

SQL Server enforces that serialization with internal objects called latches.
They maintain the consistency of various internal data structures in SQL
Server’s memory, allowing only one thread to change the object at a time. (I
will discuss latches in depth in the next chapter.)

This contention presents itself with PAGELATCH waits, which are very
short-lived: their duration is usually measured in microseconds.
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Nevertheless, they may become very noticeable in systems with large
numbers of concurrent users.

Contention during system pages modifications in tempdb is a common
source of PAGELATCH waits. There are other cases, however, when you
can see page latches and need to analyze wait resources to understand if
those waits were tempdb-related. You can do this with the code from
Listing 9-12, which captures current PAGELATCH waits using the
sys.dm_os_waiting_tasks view.

Listing 9-12. Capturing currently waiting sessions 
-- SQL Server 2005-2017 
SELECT 
    wt.session_id 
    ,wt.wait_type 
    ,er.wait_resource 
    ,er.wait_time 
FROM  
    sys.dm_os_waiting_tasks wt WITH (NOLOCK) 
        JOIN sys.dm_exec_requests er WITH (NOLOCK) ON 
            wt.session_id = er.session_id 
WHERE 
    wt.wait_type LIKE 'PAGELATCH%' 
OPTION (MAXDOP 1, RECOMPILE); 
-- SQL Server 2019 
SELECT 
    wt.session_id 
    ,wt.wait_type 
    ,er.wait_resource 
    ,er.wait_time 
    ,pi.database_id 
    ,pi.file_id 
    ,pi.page_id 
    ,pi.object_id 
    ,OBJECT_NAME(pi.object_id,pi.database_id) as [object] 
    ,pi.index_id 
    ,pi.page_type_desc 
FROM  
    sys.dm_os_waiting_tasks wt WITH (NOLOCK) 
        JOIN sys.dm_exec_requests er WITH (NOLOCK) ON 
            wt.session_id = er.session_id 
        CROSS APPLY  
            sys.fn_PageResCracker(er.page_resource) pc 
        CROSS APPLY  
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            sys.dm_db_page_info(pc.db_id,pc.file_id 
                ,pc.page_id,'DETAILED') pi 
WHERE 
    wt.wait_type LIKE 'PAGELATCH%' 
OPTION (MAXDOP 1, RECOMPILE);

Figure 9-8 shows an example of the output. SQL Server 2019 gives you a
couple of additional functions to get more detailed information. In older
versions of SQL Server, you can look at wait_resource column, which
shows database_id (2) as the first part of the value.

Figure 8-8. PAGELATCH waits

Because individual PAGELATCH waits are usually so short, you may miss
them when you query the sys.dm_os_waiting_tasks view. You can run the
query multiple times or use xEvents to track them.

Listing 9-13 shows the xEvents session to capture latch waits per database.
This session will introduce overhead, so don’t keep it running outside of
troubleshooting. Here, to reduce overhead, I am limiting the number of
events to collect.
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Listing 9-13. Capturing latch waits

CREATE EVENT SESSION [Latch Waits] ON SERVER  
ADD EVENT sqlserver.latch_suspend_end 
ADD TARGET package0.ring_buffer 
(SET max_events_limit=2000); 
GO 
-- The code below parses collected results   
DROP TABLE IF EXISTS #tmpXML; 
CREATE TABLE #tmpXML 
( 
    EventTime DATETIME2(7) NOT NULL, 
    [Event] XML 
); 
DECLARE  
    @TargetData XML; 
SELECT   
    @TargetData = CONVERT(XML,st.target_data)  
FROM   
    sys.dm_xe_sessions s WITH (NOLOCK)   
        JOIN sys.dm_xe_session_targets st WITH(NOLOCK) ON  
            s.address = st.event_session_address  
WHERE   
    s.name = 'Latch Waits' and st.target_name = 'ring_buffer'; 
INSERT INTO #tmpXML(EventTime, [Event]) 
    SELECT t.e.value('@timestamp','datetime'), t.e.query('.')  
    FROM @TargetData.nodes('/RingBufferTarget/event') AS t(e); 
;WITH EventInfo  
AS  
(  
    SELECT   
        t.[EventTime] as [Time] 
        ,t.
[Event].value('(/event[1]/data[@name="database_id"]/value/text())
[1]'  
            ,'smallint') AS [DB]  
        ,t.
[Event].value('(/event[1]/data[@name="duration"]/value/text())
[1]'  
            ,'bigint') AS [Duration] 
    FROM  
        #tmpXML t 
)  
SELECT  
    MONTH([Time]) as [Month] 
    ,DAY([Time]) as [Day] 
    ,DATEPART(hour,[Time]) as [Hour] 
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    ,DATEPART(minute,[Time]) as [Minute] 
    ,[DB] 
    ,COUNT(*) as [Latch Count] 
    ,CONVERT(DECIMAL(15,3),SUM(Duration / 1000.)) as [Duration 
(MS)]  
FROM  
    EventInfo ei   
GROUP BY 
    MONTH([Time]),DAY([Time]),DATEPART(hour,
[Time]),DATEPART(minute,[Time]),[DB] 
ORDER BY 
    [Month],[Day],[Hour],[Minute],[DB] 
OPTION (RECOMPILE, MAXDOP 1);  

There are a few things you can do in cases of tempdb system pages
contention. In SQL Server 2019, you can benefit from a new feature called
memory-optimized tempdb metadata, which converts system tables in
tempdb to latch-free, non-durable memory-optimized tables.

You can enable this feature by running the ALTER SERVER
CONFIGURATION SET MEMORY_OPTIMIZED
TEMPDB_METADATA = ON command. You’ll need to restart the server
for the change to take effect. You can check if this feature is enabled by
running the SELECT
SERVERPROPERTY('IsTempdbMetadataMemoryOptimized') command.

There are a few limitations when this feature is enabled: most notably, you
cannot create columnstore indexes on tempdb tables. Nevertheless, it is
beneficial – use it unless your server has very little memory provisioned.
(You can read more about the limitations of memory-optimized tempdb
metadata in the Microsoft documentation.)

Unfortunately, this contention may be harder to address in previous versions
of SQL Server. There are a few things you can do, however. First, check
tempdb configuration. Since allocations are done per file, you can reduce
contention by creating multiple data files. The benefit, however, will
quickly diminish as the number of files grows.

In old versions of SQL Server (prior 2016), enable the T1118 trace flag,
which disables mixed-extent allocations. This will reduce the number of

www.datasense.ir

https://docs.microsoft.com/en-us/sql/relational-databases/databases/tempdb-database?view=sql-server-ver15#memory-optimized-tempdb-limitations


changes to the system pages during allocation and deallocation operations.

In the end, you may have to look at reducing tempdb usage. The less work
the database performs, the less chance of contention.

Running out of Space
Running out of space in tempdb is never a good thing. It usually leads to
production incidents, when a query that needs to write to the database fails.
This can even impact sessions that don’t explicitly use tempdb – for
example, if you have optimistic isolation levels enabled, the UPDATE and
DELETE statements will fail when they try to write to the version store.

You may have noticed that I keep repeating this, but for good reason: it is
essential to implement free space monitoring. Depending on your
configuration and maintenance practices, you might monitor free space on
disk, available space in the database, or both. Set alerts to tell you when
tempdb space utilization becomes critical.

If you place the tempdb log file on the same drive with data files, you might
also need to look at its size and the available space there. You can do this by
running the DBCC SQLPERF(LOGSPACE) command or using
sys.database_files view. I’ll provide additional scripts and discuss how to
troubleshoot log growth issues in Chapter 11.

You have three data management views to use. The first,
sys.dm_db_file_space_usage, provides information about space usage and
available space in tempdb database files. Run the code from Listing 9-1 as
your first step in troubleshooting.

You can follow the techniques you learned earlier in the chapter to analyze
version store growth problems. Alternatively, if you see that space is
consumed by users’ or internal temporary objects, you may need to find the
sessions that consume the most space by using two other views:

sys.dm_db_session_space_usage

The sys.dm_db_session_space_usage view returns the number of pages
allocated and deallocated by each session for the database.
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sys.dm_db_task_space_usage

The sys.dm_db_task_space_usage view provides you the allocation
information for currently running tasks. That data is not reflected in
sys.dm_db_session_space_usage view until the task is completed.

Listing 9-14 shows you code that combines the data from both views,
allowing you to detect the sessions that consume the most space in tempdb.

Listing 9-14. Detecting the sessions that consume the most tempdb space

;WITH SpaceUsagePages 
AS 
( 
    SELECT 
        ss.session_id 
        ,ss.user_objects_alloc_page_count +  
            ISNULL(SUM(ts.user_objects_alloc_page_count),0) 
                AS [user_alloc_page_count] 
        ,ss.user_objects_dealloc_page_count +  
            ISNULL(SUM(ts.user_objects_dealloc_page_count),0) 
                AS [user_dealloc_page_count] 
        ,ss.user_objects_deferred_dealloc_page_count 
                AS [user_deferred_page_count] 
        ,ss.internal_objects_alloc_page_count +  
            ISNULL(SUM(ts.internal_objects_alloc_page_count),0) 
                AS [internal_alloc_page_count] 
        ,ss.internal_objects_dealloc_page_count +  
            ISNULL(SUM(ts.internal_objects_dealloc_page_count),0) 
                AS [internal_dealloc_page_count] 
    FROM 
        sys.dm_db_session_space_usage ss WITH (NOLOCK) LEFT JOIN 
            sys.dm_db_task_space_usage ts WITH (NOLOCK) ON 
                ss.session_id = ts.session_id 
    GROUP BY 
        ss.session_id 
        ,ss.user_objects_alloc_page_count  
        ,ss.user_objects_dealloc_page_count  
        ,ss.internal_objects_alloc_page_count  
        ,ss.internal_objects_dealloc_page_count 
        ,ss.user_objects_deferred_dealloc_page_count 
) 
,SpaceUsage 
AS 
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( 
    SELECT 
        session_id 
        ,CONVERT(DECIMAL(12,3), 
            ([user_alloc_page_count] - [user_dealloc_page_count]) 
/ 128. 
        ) AS [user_used_mb] 
        ,CONVERT(DECIMAL(12,3), 
            ([internal_alloc_page_count] - 
[internal_dealloc_page_count]) / 128. 
        ) AS [internal_used_mb] 
        ,CONVERT(DECIMAL(12,3),user_deferred_page_count / 128.) 
            AS [user_deferred_used_mb] 
    FROM 
        SpaceUsagePages 
) 
SELECT 
    su.session_id 
    ,su.user_used_mb 
    ,su.internal_used_mb 
    ,su.user_deferred_used_mb 
    ,su.user_used_mb + su.internal_used_mb AS [space_used_mb]  
    ,es.open_transaction_count 
    ,es.login_time 
    ,es.original_login_name 
    ,es.host_name 
    ,es.program_name 
    ,er.status as [request_status] 
    ,er.start_time 
    ,CONVERT(DECIMAL(21,3),er.total_elapsed_time / 1000.) AS 
[duration] 
    ,er.cpu_time 
    ,ib.event_info as [buffer] 
    ,er.wait_type 
    ,er.wait_time 
    ,er.wait_resource 
    ,er.blocking_session_id 
FROM  
    SpaceUsage su   
        LEFT JOIN sys.dm_exec_requests er WITH (NOLOCK) ON 
            su.session_id = er.session_id 
        LEFT JOIN sys.dm_exec_sessions es WITH (NOLOCK) ON 
            su.session_id = es.session_id 
        OUTER APPLY  
            sys.dm_exec_input_buffer(es.session_id, 
er.request_id) ib 
WHERE  
     su.user_used_mb + su.internal_used_mb >= 50 
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ORDER BY 
    [space_used_mb] DESC 
OPTION (RECOMPILE)

You can kill the sessions that consume the most space in tempdb to alleviate
the problem. Obviously, it is a good idea to troubleshoot what caused the
high space usage and address the root cause of the issue.

TempDB Configuration
Let’s finish the chapter with a few tips on tempdb configuration. I’ve
covered many aspects of it already; nevertheless, I’d like to reiterate them
here.

First of all, place tempdb on the fastest drive possible. Use fast local storage
(DAS) if it’s an option, to give you lower latency and higher throughput
compared to network-based storage (NAS). (See chapter 3.)

In non-Enterprise editions, you can even consider putting tempdb on the
RAM drive if the server has enough memory available. In Enterprise
edition, it is usually better to leave the memory to SQL Server.

Obviously, perform capacity planning and allocate enough storage space for
tempdb workload. Set monitoring on available space and set alerts for when
you are low on space. Running out of space in tempdb will lead to
production incidents and potential downtime.

There is a trick you can use when you provision tempdb using fast storage
with limited capacity: you can split tempdb files between fast and slow
drives. Pre-allocate the files on the fast drive to the maximum possible size
and disable auto-growth for them. At the same time, leave files on the slow
drives very small, but keep auto-growth enabled.

In that configuration, SQL Server will favor the files on the fast drives
during normal operations. However, in extreme condition, the files on the
slow drive will start to grow, which helps avoid out-of-space incidents. I do
not use this configuration often; however, it may be beneficial in rare
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circumstances, when fast storage is big enough to handle regular tempdb
workload but doesn’t not have enough capacity for the spikes.

Create multiple data files. The old well-known advice that you should
match the number of files with the number of CPUs may not be relevant
anymore. My rule of thumb is:

Match the number of files with number of CPUs if the server has
eight or fewer CPUs.

If server has more than eight CPU cores, use either eight data files
or 1/4 of the number of cores, whichever is greater, rounding up in
batches of four files. For example, use eight data files in the 24-
core server and twelve data files in the 40-core server.

Add files in the batches of four if you see any allocation contention
or bottlenecks.

Use the same initial size and auto-growth parameters specified in MB for
all files. If you are using SQL Server prior 2016, set the trace flag T1118
(disable mixed extents allocation) and, potentially, T1117 (grow all files in
the filegroup simultaneously). Both of those flags are server-wide and
impact user databases. This is not a problem with the T1118 flag; however,
do not enable T1117 if users’ databases have unevenly sized data files.

Finally, if you are using SQL Server 2019 or above, consider enabling
memory-optimized catalogs in tempdb, especially if you see PAGELATCH
waits over tempdb allocation pages.

Summary
Tempdb is a busy database that is shared among all user and system
sessions. High tempdb performance and throughput are essential for good
system performance.

Place tempdb on the fastest drive you have. Make sure that the database
configuration is correct. Create multiple data files using the same auto-
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growth parameters specified in MB. Enable the T1118 and, potentially,
T1117 flags in SQL Server versions prior to 2016.

Analyze PAGELATCH waits if you see them and detect if they are tempdb-
related. In SQL Server 2019, you can mitigate them by enabling memory-
optimized tempdb catalogs. In older versions of SQL Server, analyze the
number of tempdb files, use temporary object caching, and reduce tempdb
usage.

Troubleshoot and address excessive tempdb load. Refactor code that does
not use temporary objects legitimately, and optimize queries with excessive
spills.

Be aware that table variables do not store statistics; doing so leads to
cardinality estimation errors and inefficient query plans. Consider using
temporary tables as a safer choice.

In the next chapter, I’ll talk about latches – synchronization objects used by
SQL Server to protect internal in-memory structures.

Troubleshooting Checklist
Check tempdb configuration (number of files, auto-growth settings, T1118
in old versions of SQL Server, etc.).

Analyze performance of tempdb storage.

Review tempdb space consumption and usage. Address issues if feasible.

Troubleshoot if PAGELATCH waits are tempdb-related.

Consider enabling memory-optimized tempdb metadata in SQL Server
2019, especially if you notice tempdb-related PAGELATCH waits.

Setup monitoring on tempdb drive space utilization.
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Chapter 9. Latches

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 10th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at dmitri@aboutsqlserver.com.

Latches are lightweight synchronization objects that protect the consistency
of SQL Server internal data structures. As the opposite of locks, which
protect transactional data consistency, latches prevent corruption of the data
structures in memory.

In most cases, latches are short-lived and may be unnoticeable in systems
with light loads. However, as loads grow, latch contention may become an
issue and can limit system scalability and throughput. In this chapter, I will
discuss how to detect and address those situations.

I will start this chapter with an overview of latches and their categories and
types. Next, I will discuss page latches and several mitigation techniques to
address their contention. Finally, I will cover other ways to deal with
common latch types.

Introduction to Latches

www.datasense.ir



There is a concept in computer science called mutual exclusion, which
means that multiple threads or processes cannot execute critical code
simultaneously. Think about the multi-threaded application in which threads
use the shared objects. In those systems, you often need to serialize the code
that accesses those objects to avoid creating race conditions when multiple
threads read and update them simultaneously.

Internally, SQL Server enforces mutual exclusion and protects in-memory
data structures by using latches. People are often confused by latches’
similarities to locks: both types of objects affect concurrency and may
prevent simultaneous access to the same data. There is a subtle difference,
however.

SQL Server uses locks to enforce logical data consistency, preventing
sessions from working with transactionally inconsistent data. Latches, on
the other hand, enforce the physical consistency of in-memory data
structures, preventing corruption by multiple workers that access them
simultaneously. Latches do not work in transaction boundaries; they are
acquired when the worker needs to access an in-memory object and
released after the operation is done.

Consider a situation where multiple sessions need to update different rows
on the same data page. Those sessions would not block each other with
locks, as long as they don’t acquire incompatible locks on the same rows.
However, they might block each other with latches to prevent simultaneous
updates of the data page object in-memory, which can corrupt it.

There are five different latch types in SQL Server. In terms of compatibility,
they are similar to locks, but don’t confuse the two – they are different
beasts!

Keep latch ( KP )

Keep latch (KP) ensures that the referenced structure cannot be
destroyed. It is compatible with all other latch types except the destroy
(DT) latch. This latch type has similarities to schema stability (Sch-S)
locks.

1
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Shared latch ( SH )

A shared latch (SH) is required when a thread needs to read the data
structure. Shared (SH) latches are compatible with each other and with
the keep (KP) and update (UP) latches.

Update latch ( UP )

Update latches (UP) allow other threads to read the structure but
prevents them from updating it. SQL Server uses them in some
scenarios to improve concurrency, similar to update (U) locks. Update
(UP) latches are compatible with keep (KP) and shared (SH) latches and
incompatible with all other types.

Exclusive latch ( EX )

An exclusive latch (EX) is required when a thread modifies the data
structure. Conceptually, exclusive (EX) latches are similar to exclusive
(X) locks; they are incompatible with all other latch types except keep
(KP) latches.

Destroy latch ( DT )

A destroy latch (DT) is required to destroy a data structure. For
example, a destroy (DT) latch would be acquired when the lazy writer
process removes a data page from the buffer pool. These latches are
incompatible with other latch types.

When the worker cannot obtain a latch on the data structure, it becomes
suspended and generates a latch-related wait type. Those wait types can
belong to one of three categories:

PAGEIOLATCH

The PAGEIOLATCH waits indicate I/O related latches. SQL Server
uses these latches and wait types while waiting for data pages to be read
from disk to the buffer pool. A large percentage of such waits could
indicate a large number of non-optimized queries and/or suboptimal
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disk subsystem performance. Chapter 3 covers how to troubleshoot
those conditions.

PAGELATCH

PAGELATCH waits indicate buffer-pool-related latches, which occur
when threads need to access or modify data and allocation map pages in
the buffer pool. As you know from chapter 9, those waits can be
triggered by contention in tempdb system catalogs. I’ll talk about other
conditions that can trigger them later in this chapter.

LATCH

All other non-buffer-pool-related latches. I’ll talk about them later in the
chapter.

SQL Server uses different wait types for each latch type. For example,
PAGELATCH_EX indicates the wait for an exclusive (EX) latch on the
buffer pool page. The LATCH_SH wait type shows a shared (SH) non-
buffer pool latch wait.

Let’s look at the latch categories in depth.

Page Latches
SQL Server uses page latches to protect the consistency of the buffer pool
pages in memory. When a worker needs to change anything on the page, it
obtains an exclusive (EX) page latch. Similarly, when a worker needs to
read something the page, it acquires a shared (SH) page latch. The workers
can read the data simultaneously; however, only one worker can modify the
page at any given time, and only when no other workers are accessing it.

The impact of page latches greatly depends on the system load and
workload patterns. SQL Server reads data from and writes data to in-
memory pages very quickly; you might not notice it in a system with a light
load and a small number of concurrent users. However, page latch
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contention increases with the number of active sessions simultaneously
accessing the same data pages.

There are two common reasons for page latches. They are not mutually
exclusive and both can contribute to a high percentage of PAGELATCH
waits on the server. You need to address both when troubleshooting.

The first is related to tempdb. A heavy concurrent tempdb workload may
introduce latch contention on system pages (chapter 9 discusses how to
detect and mitigate that condition).

The second most common case for page latching usually occurs in users’
tables. It is called the hotspot. Hotspots usually occur in indexes with ever-
increasing (or ever-decreasing) values, such as identities, sequences or
datetime columns that populate with the time when rows are inserted. When
multiple sessions simultaneously insert data into those indexes, all rows are
placed on the same page (the last one), which leads to page latch contention
as workers start blocking each other.

Let’s look at a hypothetical scenario in which you want to log application-
request information in the database. Listing 10-1 creates a few tables to
store the data.

NOTE
Do not consider this implementation a real-life example. In fact, relational databases are
usually the worst place to store logs. I am using it only for the sake of demonstrating
page latch contention.

Listing 10-1. Creating tables to store the logs

CREATE TABLE dbo.WebRequests_Disk 
( 
   RequestId INT NOT NULL identity(1,1), 
   RequestTime DATETIME2(4) NOT NULL 
      CONSTRAINT DEF_WebRequests_Disk_RequestTime 
      DEFAULT SYSUTCDATETIME(), 
   URL VARCHAR(255) NOT NULL, 
   RequestType TINYINT NOT NULL,  
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   ClientIP VARCHAR(15) NOT NULL, 
   BytesReceived INT NOT NULL, 
    
   CONSTRAINT PK_WebRequests_Disk 
   PRIMARY KEY NONCLUSTERED(RequestID) 
   ON [LOGDATA] 
); 
CREATE UNIQUE CLUSTERED INDEX 
IDX_WebRequests_Disk_RequestTime_RequestId 
ON dbo.WebRequests_Disk(RequestTime,RequestId) 
ON [LOGDATA]; 
CREATE TABLE dbo.WebRequestHeaders_Disk 
( 
   RequestId INT NOT NULL, 
   HeaderName VARCHAR(64) NOT NULL, 
   HeaderValue VARCHAR(256) NOT NULL, 
    
   CONSTRAINT PK_WebRequestHeaders_Disk 
   PRIMARY KEY CLUSTERED(RequestID,HeaderName) 
   ON [LOGDATA] 
); 
CREATE TABLE dbo.WebRequestParams_Disk 
( 
   RequestId INT NOT NULL, 
   ParamName VARCHAR(64) NOT NULL, 
   ParamValue nVARCHAR(256) NOT NULL, 
    
   CONSTRAINT PK_WebRequestParams_Disk 
   PRIMARY KEY CLUSTERED(RequestID,ParamName) 
   ON [LOGDATA] 
);

Next, I will run the application, which will insert data into those tables from
multiple threads simultaneously. You can get the application code from the
book’s companion material.

Figure 10-1 shows the metrics from my test server when the application
was running. Although the duration of individual latch waits was very short
—just a fraction of a millisecond—cumulatively they contributed to very
large numbers and limited application throughput. CPU load had not been
maxed out when that happened.
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Figure 9-1. Fig. 10-1. Performance metrics during page latch contention

Figure 10-2 shows wait statistics, obtained with the code in Listing 2-1. As
you can see, PAGELATCH_EX and PAGELATCH_SH waits contribute to
more than 60% of total waits.

Figure 9-2. Fig. 10-2. Wait statistics with page latch contention

You can detect the indexes that introduce the most page latch waits using
the sys.dm_db_index_operational_stats function. As you can guess by the
name, this function tracks indexes’ operational metrics, including the
number of latches and their wait times.
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The code in Listing 10-2 detects indexes that contribute to hotspots. This is
a very simplified implementation, however; I’ll provide a more
sophisticated query to analyze indexes’ health and usage in Chapter 14.

Listing 10-2. Analyzing page latch index statistics

SELECT  
    s.name + '.' + t.name as [table] 
    ,i.index_id 
    ,i.name as [index] 
    ,SUM(os.page_latch_wait_count) AS [latch count] 
    ,SUM(os.page_latch_wait_in_ms) as [latch wait (ms)] 
FROM 
    sys.indexes i WITH (NOLOCK) JOIN sys.tables t WITH (NOLOCK) 
on  
        i.object_id = t.object_id 
    JOIN sys.schemas s WITH (NOLOCK) ON  
        t.schema_id = s.schema_id 
    CROSS APPLY 
        sys.dm_db_index_operational_stats 
        ( 
            DB_ID() 
            ,t.object_id 
            ,i.index_id 
            ,0 
        ) os 
GROUP BY 
    s.name, t.name, i.name, i.index_id 
ORDER BY 
    SUM(os.page_latch_wait_in_ms) DESC;

Figure 10-3 shows the output from the code. As you can see, the data
allows you to detect problematic indexes in the database quickly.
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Figure 9-3. Fig. 10-3. Output from sys.dm_db_index_operational_stats function

Addressing Hotspots:
OPTIMIZE_FOR_SEQUENTIAL_KEY Index Option
Unfortunately, addressing page latching due to hotspots is not an easy task,
especially in old versions of SQL Server. In SQL Server 2019 and above,
you can enable the OPTIMIZE_FOR_SEQUENTIAL_KEY index property.
This setting will improve throughput in hotspot scenarios, but will not solve
the problem completely.

Let’s enable that setting, as shown in Listing 10-3, and repeat the test. I also
recommend clearing wait statistics before restarting the application.

Listing 10-3. Enable OPTIMIZE_FOR_SEQUENTIAL_KEY option (SQL
Server 2019 and above)

ALTER INDEX PK_WebRequestHeaders_Disk 
ON dbo.WebRequestHeaders_Disk 
SET (OPTIMIZE_FOR_SEQUENTIAL_KEY = ON); 
ALTER INDEX PK_WebRequestParams_Disk 
ON dbo.WebRequestParams_Disk 
SET (OPTIMIZE_FOR_SEQUENTIAL_KEY = ON); 

Figure 10-4 shows performance metrics when the
OPTIMIZE_FOR_SEQUENTIAL_KEY is enabled. As you can see, that
option improves throughput; however, the latch waits are still significant.

www.datasense.ir



Figure 9-4. Fig.10-4. Performance metrics with OPTIMIZE_FOR_SEQUENTIAL_KEY enabled

Figure 10-5 shows the wait statistics. You can see the new wait type,
BTREE_INSERT_FLOW_CONTROL, in the output. This wait type is
specific to OPTIMIZE_FOR_SEQUENTIAL_KEY implementation and,
for all practical purposes, masks PAGELATCH waits and latch contention
in wait statistics.

Figure 9-5. Fig. 10-5. Wait statistics with OPTIMIZE_FOR_SEQUENTIAL_KEY enabled

While enabling OPTIMIZE_FOR_SEQUENTIAL_KEY may help improve
throughput in hotspot situations, it does not completely eliminate latching.
Moreover, this option is not available in older versions of SQL Server (prior
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to 2019). In those cases, you have very few options besides refactoring
database schema and applications.

You need to detect and analyze indexes that contribute the most to latching.
Review index usage (I’ll share a few helpful techniques in Chapter 14) and
determine if problematic indexes can be dropped or altered in ways that
prevent them from constantly increasing and contributing to hotspots.

NOTE
Clustered indexes defined on identity columns in active tables are one of the most
common places for hotspots. To address that, use clustered indexes that spread insert
activity across the table.

Addressing Hotspots: Hash Partitioning
One technique that allow you to spread inserts across a table is called hash
partitioning. You can partition the table and use random hash values to
spread rows across multiple partitions.

Listing 10-4 shows such an example. It redefines two of the tables from
Listing 10-1, partitioning them with a new HashVal column calculated as
CHECKSUM(RequestId). This randomly distributes the data across
multiple partitions, reducing insertion rates and latch contention on each
individual partition.

Note that the HashVal column is defined as the rightmost column in the
indexes, to preserve the sorting order on each individual partition.

Listing 10-4. Implementing hash partitioning

-- For demo purposes 
TRUNCATE TABLE dbo.WebRequests_Disk; 
DROP TABLE dbo.WebRequestHeaders_Disk; 
DROP TABLE dbo.WebRequestParams_Disk; 
GO 
CREATE PARTITION FUNCTION pfHash(int) 
AS RANGE LEFT FOR VALUES 
(-1847483647,-1547483647,-1247483647,-947483647,-647483647,-34748
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3647 
,-47483647,252516353,552516353,852516353,1152516353,1452516353,17
52516353); 
CREATE PARTITION SCHEME psHash 
AS PARTITION pfHash 
ALL TO ([LOGDATA]); 
CREATE TABLE dbo.WebRequestHeaders_Disk 
( 
   RequestId INT NOT NULL, 
   HeaderName VARCHAR(64) NOT NULL, 
   HeaderValue VARCHAR(256) NOT NULL, 
   HashVal AS CHECKSUM(RequestId) PERSISTED, 
   CONSTRAINT PK_WebRequestHeaders_Disk 
   PRIMARY KEY CLUSTERED(RequestID,HeaderName,HashVal) 
   ON psHash(HashVal) 
); 
CREATE TABLE dbo.WebRequestParams_Disk 
( 
   RequestId INT NOT NULL, 
   ParamName VARCHAR(64) NOT NULL, 
   ParamValue nVARCHAR(256) NOT NULL, 
   HashVal AS CHECKSUM(RequestId) PERSISTED,  
    
   CONSTRAINT PK_WebRequestParams_Disk 
   PRIMARY KEY CLUSTERED(RequestID,ParamName,HashVal) 
   ON psHash(HashVal) 
);

Figure 10-6 shows the performance metrics on my test server with hash
partitioning implemented. The insert throughput is better than without the
partitioning; however, using the OPTIMIZE_FOR_SEQUENTIAL_KEY
approach would outperform it. Your mileage may vary, of course, and
results may differ in other use cases and workloads.
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Figure 9-6. Fig.10-6. Performance metrics with hash partitioning

Figure 10-7 shows the wait statistics. As you see, the page latch wait
percentage is lower comparing than without the partitioning (shown in
Figure 10-2).

Figure 9-7. Fig. 10-7. Wait statistics with hash partitioning

While hash partitioning may help reduce latch contention, it is dangerous.
As with any partitioning, the data will be spread across multiple internal
physical tables and partitions. This will change execution plans and may
lead to regressions in query performance. Test the system carefully when
you implement this.
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In some cases, you can reduce the side effects of hash partitioning by using
staging tables. In that scenario, the application may insert data into hash-
partitioned staging tables and have another process running on schedule,
copying data from staging to main tables. While this approach adds some
overhead from staging tables management, it protects against the
unanticipated performance regressions that hash partitioning can introduce.

Addressing Hotspots: In-Memory OLTP
It is impossible to discuss performance issues introduced by latching
without mentioning In-Memory OLTP. After all, one of the main goals of
that technology is addressing latching and locking challenges with disk-
based tables under heavy loads. Memory-optimized tables are latch- and
lock-free and would scale perfectly under a concurrent OLTP workload.

Those benefits don’t come for free, though. In-Memory OLTP and memory-
optimized tables behave differently than classic Storage Engine and disk-
based tables. You need to design the system properly and utilize technology
to avoid possible side effects and issues. As with hash partitioning, you may
get performance regressions if you simply switch disk-based tables to
become memory-optimized without taking different technology behavior
into consideration.

Fortunately, memory-optimized tables are perfect candidates for staging
tables. You can completely eliminate hotspots and latch contention and
reduce any possible side effects In-Memory OLTP may introduce. Consider
it a valid implementation option to solve hotspot problems.

I will repeat my word of caution, though: you need to know how to deploy
and maintain In-Memory OLTP properly before using it. You can read my
book Expert SQL Server In-Memory OLTP to learn more.

Other Latch Types
The third latch category, non-buffer-pool latches, presents itself with
generic LATCH wait types. Similar to wait statistics, you can get
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information about individual latch types using the sys.dm_os_latch_stats
view shown in Listing 10-5. You can also clear latch statistics with the
command DBCC SQLPERF(’sys.dm_os_latch_stats', CLEAR).

Listing 10-5. Analyzing latch statistics

;WITH Latches 
AS 
( 
    SELECT  
        latch_class, wait_time_ms, waiting_requests_count 
        ,100. * wait_time_ms / SUM(wait_time_ms) OVER() AS Pct 
        ,100. * SUM(wait_time_ms) OVER(ORDER BY wait_time_ms 
DESC) / 
            NULLIF(SUM(wait_time_ms) OVER(), 0) AS RunningPct 
        ,ROW_NUMBER() OVER(ORDER BY wait_time_ms DESC) AS RowNum 
    FROM  
        sys.dm_os_latch_stats WITH (NOLOCK) 
    WHERE  
        wait_time_ms > 0 AND 
        latch_class NOT IN (N'BUFFER',N'SLEEP_TASK') 
) 
SELECT 
    l1.latch_class AS [Latch Type] 
    ,l1.waiting_requests_count AS [Latch Count] 
    ,CONVERT(DECIMAL(12,3), l1.wait_time_ms / 1000.0)  
        AS [Wait Time] 
    ,CONVERT(DECIMAL(12,1), l1.wait_time_ms / 
l1.waiting_requests_count)  
        AS [Avg Wait Time]     
    ,CONVERT(DECIMAL(6,3), l1.Pct)  
        AS [Percent] 
    ,CONVERT(DECIMAL(6,3), l1.RunningPct)  
        AS [Running Percent] 
FROM 
    Latches l1 
WHERE 
    l1.RunningPct <= 99 OR l1.RowNum = 1 
ORDER BY 
    l1.RunningPct   
OPTION (RECOMPILE, MAXDOP 1);

Figure 10-8 shows the output from one of the servers.

www.datasense.ir

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-latch-stats-transact-sql


Figure 9-8. Fig.10-8. Latch statistics

Unfortunately, latch types are poorly documented. You often need to search
multiple sources to understand the meaning of each latch. Nevertheless,
let’s look at a few common types you will encounter.

Parallelism-related latches

There are multiple parallelism-related latch types. The most common
are ACCESS_METHOD_DATASET_PARENT,
ACCESS_METHODS_SCAN_RANGE_GENERATOR,
ACCESS_METHODS_SCAN_KEY_GENERATOR, and
NESTING_TRANSATION_FULL. In my experience, those latches
usually appear at the top of the list in the sys.dm_os_latch_stats view
output.

Treat these latches as you would parallelism waits (CXPACKET,
CXCONSUMER and EXCHANGE), which often appear alongside
parallelism-related latches. Analyze and tune parallelism usage to
address this, as discussed in Chapter 6.

LOG_MANAGER

The LOG_MANAGER latch type indicates growth in the transaction
log. You may see that latch in situations where something is regularly
preventing the transaction log from being truncated. Monitor the
log_reuse_wait_desc column in the sys.databases view to troubleshoot it
(more in the next chapter).
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I have also encountered this latch type in systems that regularly shrink
the transaction log after each log backup. This is a bad practice, since
the log file is zero-initializing at the time of growth.

ACCESS_METHODS_HOBT_VIRTUAL_ROOT

The ACCESS_METHODS_HOBT_VIRTUAL_ROOT latch is used
during access to the index metadata. Significant presence of this latch
indicates a large number of page splits of the root pages in B-Tree
indexes. Usually this happens in small indexes with very volatile data,
for example tables that operate as in-database queues.

You can detect potentially problematic indexes with
tree_page_latch_wait_count and tree_page_latch_wait_time_ms
columns in the sys.db_db_index_operational_stats view (more in
Chapter 14).

ACCESS_METHODS_HOBT_ COUNT

The ACCESS_METHODS_HOBT_COUNT latch is used to update
page and row count information in table metadata. Contention with this
latch indicates lots of small concurrent data modifications in some
tables.

Chapter 14 will discuss an approach you can use to detect such tables;
however, it may be easier to work with the development team instead of
using SQL Server views, since addressing this latch contention usually
requires application changes.

FGCB_ADD_REMOVE

The FGCB_ADD_REMOVE latch occurs during adding, removing,
growing and shrinking files in the filegroup. Check if Instant File
Initialization is enabled and Auto Shrink database option is disabled.
Also check that auto-growth parameters are not growing files in very
small chunks.
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You may also see that latch is the databases with very large number of
data files, especially in tempdb. Re-evaluate database configuration to
address it.

TRACE_CONTROLLER

As you can guess by the name, the TRACE_CONTROLLER latch
indicates large number of traces . Evaluate monitoring strategy and
remove unnecessary monitoring when you see that.

Similar to waits, latches are unavoidable. They are completely acceptable in
small numbers; however, excessive latching is usually a sign of the issues in
the system. Don’t jump to immediate action, though – identify and address
the root causes!

Summary
Latches are lightweight synchronization objects that protect the consistency
of SQL Server internal data structures. They are usually short-lived and
may be unnoticeable in systems with light loads. However, as loads grow,
latch contention may become an issue, limiting system scalability and
throughput.

There are three categories of latches and wait types associated with them;
each latch type (shared (SH), exclusive (EX), etc.) has corresponding wait
type in wait statistics.

PAGEIOLATCH waits occur when SQL Server waits for the data page to
be read to the buffer pool. A significant percentage of those waits require
you to troubleshoot disk subsystem load (see Chapter 3).

Page latches and corresponding PAGELATCH waits occur when multiple
workers are simultaneously accessing and updating data pages in memory.
They are usually triggered by tempdb system object contention or by
hotspots in ever-increasing indexes in users’ databases.
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In SQL Server 2019 and above, you can reduce the impact of hotspots by
enabling the OPTIMIZE_FOR_SEQUENTIAL_KEY index option.
However, in many cases, you need to drop or change the index, or
implement workarounds with hash partitioning and/or staging tables.

Non-buffer-pool-related latches present themselves with LATCH wait
types. You can obtain latch statistics with the sys.dm_os_latch_stats view.
Identify and address the root cause of these issues when you troubleshoot
them.

Now it is time to look at transaction log problems you may encounter.

Troubleshooting Checklist
Analyze the impact of page latches with PAGELATCH waits.

Detect if PAGELATCH waits are coming from tempdb or hotspots in users’
databases.

Address tempdb system object contention (chapter 9).

Identify indexes that contribute to hotspots with
sys.dm_db_index_operational_stats view. Analyze if indexes can be
refactored or dropped (more in Chapter 14).

Enable OPTIMIZE_FOR_SEQUENTIAL_KEY option in SQL Server 2019
and above

Consider refactoring the application using In-Memory OLTP, staging tables,
and/or hash partitioning if neither of the other options helps with hotspots.

Review latch statistics with sys.dm_os_latch_stats view; troubleshoot and
address issues if needed.

1  Every development language has a set of synchronization primitives: for example, mutexes
and critical sections. In T-SQL, you can use application locks to serialize access to some code.
I am not covering them in this book; however, you can read about them in my Expert SQL
Server Transactions and Locking book or in the Microsoft Documentation.
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Chapter 10. Transaction Log

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be Chapter 11 of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

Every database in SQL Server has one or more transaction log files in
addition to data files. The transaction log stores information about the
changes made in the database and allows SQL Server to recover databases
to transactionally consistent states in case of an unexpected shutdown or
crash. Every data modification in the database is stored there, and high log
file throughput is essential for good system performance.

In this chapter, I’ll explain how SQL Server logs transactions and how the
transaction log works internally. Next, I’ll cover several best practices for
transaction log configuration and talk about how to address “Transaction
log full” situation. Finally, I’ll discuss how to troubleshoot insufficient
transaction log throughput.

Transaction Log Internals
SQL Server uses a transaction log to keep each database in a
transactionally consistent state, meaning that data modifications done from
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within transactions must either be committed or rolled back in full. SQL
Server never allows data to be transactionally inconsistent by applying just
a subset of the changes from uncommitted transactions.

The transaction log guarantees consistency. It stores the stream of log
records generated by data modifications and some internal operations.
Every log record has a unique, auto-incrementing Log Sequence Number
(LSN) and describes the data change. It includes information about the
affected row, the old and new versions of the data, the transaction that
performed the modification, and so forth.

Every data page keeps the LSN of the last log record that modified it.
During recovery, SQL Server can compare the LSNs of the log records and
data pages and find out if the most recent changes were saved to the data
files. There is enough information stored in a log record to undo or redo the
operation if needed.

SQL Server uses Write-Ahead Logging (WAL), which guarantees that log
records are always written to the log file before dirty data pages are saved to
the database. Sharp-eyed readers may notice that in Chapter 3, I mentioned
that log records are saved synchronously with data modifications, while
data pages are saved asynchronously during the checkpoint process. While
that is conceptually correct, I will be more precise here: SQL Server caches
the log records in small memory caches called log buffers, writing them in
batches to reduce the number of of log-write I/O operations.

Each database has its own log buffer, consisting of 60KB structures called
log blocks. Each log buffer (and database) can have up to 128 log blocks.
SQL Server writes log blocks to the log file in a single I/O operation.
However, it does not always wait until the log block is full. The typical size
of a log-writing I/O operation varies, from 512 bytes to 60KB.

Unfortunately, the. SQL Server documentation is inconsistent in its
terminology, and often references log blocks as log buffers. Just remember
that SQL Server caches the log records in memory before writing them on
disk.
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Data Modifications and Transaction Logging
Let’s look at how SQL Server modifies data in more detail. Figure 11-1
shows a database with an empty log buffer and transaction log. The last
transaction in the log has an LSN of 7314.

Let’s assume that there are two active transactions: T1 and T2. The BEGIN
TRAN log records for both of those transactions have already been saved in
the log and are not shown in the diagram.

Figure 10-1. Data modifications and transaction logging: Initial state

Let’s assume that transaction T1 updates one of the rows on page (1:24413).
This operation generates a new log record, which will be placed into the log
buffer. It will also update the data page, marking it as dirty and changing the
LSN in the page header. Figure 11-2 illustrates that.
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At this point, the log record has not been saved to the log file (this is often
called hardened). It does not introduce any issues as long as the data page
has not been saved in the data file. In event of an SQL Server crash, both
the log record and the modifications on the data page will be gone—which
is fine, because the transaction has not been committed.

Figure 10-2. Data modifications and transaction logging: State after the first update

Next, let’s assume that transaction T2 inserts a new row into page
(1:27013), while transaction T1 deletes another row on the same page.
Those operations generate two log records. These are placed into the log
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buffer, as shown in Figure 11-3. Right now, all log records are still in the
log buffer.

Figure 10-3. Data modifications and transaction logging: State after two data modifications

Now let’s assume that an application commits transaction T2. This action
generates a COMMIT log record and forces SQL Server to write (harden)
the content of the log block to disk. It writes all log records from the buffer
to disk, regardless of what transaction generated them (Figure 11-4).
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Figure 10-4. Data modifications and transaction logging: Commit operation

The applications receive confirmation that the transaction has been
committed only after all log records are hardened. Even though the data
page (1:27013) is still dirty and has not been saved into the data file, the
hardened log records on the disk have enough information to re-apply the
changes made by the committed T2 transaction if needed.

The dirty pages from the buffer pool will be saved to data files on the
checkpoint. This operation also generates a CHECKPOINT log record and
immediately hardens it into the log. Figure 11-5 shows that state.
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Figure 10-5. Data modifications and transaction logging: Checkpoint

After the checkpoint occurs, the pages in the data file may store data from
uncommitted transactions (T1, in our example). However, log records in the
transaction log include enough information to undo the changes if needed.
When this is the case, SQL Server performs compensation operations,
executing actions opposite to those that made the original data
modifications and generating compensation log records.

Figure 11-6 shows such an example, rolling transaction T1 back. Here, SQL
Server has performed a compensation update, generating a compensation
log record (LSN: 7320) to reverse the changes of the original update
operation (LSN: 7315). It has also generated a compensation insert (LSN:
7321) to compensate for the delete operation (LSN: 7317).
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Figure 10-6. Data modifications and transaction logging: Rollback

There are two transaction logging-related waits to monitor.

WRITELOG

WRITELOG waits occur when SQL Server is waiting for the
completion of an I/O operation that writes a log block to disk. With the
exception of delayed durability (covered later in this chapter), this type
of wait is synchronous, since it prevents transactions from committing
while the write I/O is in progress. Your goal should be to minimize that
wait and improve transaction-log throughput as much as possible.

LOGBUFFER
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LOGBUFFER waits occur when SQL Server is waiting for an available
log block to save the log records. In most cases, this happens due to
insufficient I/O throughput, when SQL Server cannot write log blocks
to disk fast enough. Usually, when LOGBUFFER waits are present,
you’ll also see WRITELOG waits. Improving transaction log
throughput would help to address that.

I will talk how to troubleshoot and improve log-file throughput later in this
chapter. However, you can also improve transaction-log performance by
reducing the amount of logging. You can do this by removing unnecessary
and unused indexes (more on those in Chapter 14), tuning your index-
maintenance strategy to reduce page splits, and reducing the row size in
frequently modified indexes.

You can also improve your transaction-management strategy by avoiding
autocommitted transactions. This greatly reduces the amount of logging and
the number of write log I/O requests in the system. Let’s look at that in
more detail.

Explicit and Autocommitted Transactions and Log
Overhead
As you learned in Chapter 8, SQL Server always executes statements in the
context of a transaction. If you don’t have any explicit or implicit
transactions started, SQL Server runs the statement in an autocommitted
transaction, as if that statement was wrapped into a BEGIN TRAN ...
COMMIT block.

Logging autocommitted transactions means including BEGIN XACT and
COMMIT XACT transaction log records, which can significantly increase
the amount of logging in the system. More importantly, it also decreases log
performance, since SQL Server has to flush the log blocks after each
statement on every COMMIT operation.

Figure 11-7 illustrates this. INSERT_1, UPDATE_1 and DELETE_1
operations run in autocommitted transactions, generating additional log
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records and forcing the log buffer to flush on each COMMIT. Alternatively,
running those operations in explicit transactions leads to more efficient
logging.

Figure 10-7. Explicit and autocommitted transactions

The code in Listing 11-1 shows the overhead involved in autocommitted
transactions as compared to explicit transactions. It performs an
INSERT/UPDATE/DELETE sequence 10,000 times in the loop, in
autocommitted and explicit transactions, respectively. It then compares their
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execution time and transaction log throughput using the
sys.dm_io_virtual_file_stats view.

Example 10-1. Explicit and autocommitted transactions
CREATE TABLE dbo.TranOverhead 
( 
    Id INT NOT NULL, 
    Col CHAR(50) NULL, 
    CONSTRAINT PK_TranOverhead 
    PRIMARY KEY CLUSTERED(Id) 
); 
  
-- Autocommitted transactions 
DECLARE 
    @Id INT = 1 
    ,@StartTime DATETIME = GETDATE() 
    ,@num_of_writes BIGINT 
    ,@num_of_bytes_written BIGINT 
  
SELECT @num_of_writes = num_of_writes, @num_of_bytes_written = 
num_of_bytes_written 
FROM sys.dm_io_virtual_file_stats(db_id(),2); 
  
WHILE @Id <= 10000 
BEGIN 
    INSERT INTO dbo.TranOverhead(Id, Col) VALUES(@Id, 'A'); 
    UPDATE dbo.TranOverhead SET Col = 'B' WHERE Id = @Id; 
    DELETE FROM dbo.TranOverhead WHERE Id = @Id; 
  
    SET @Id += 1; 
END; 
  
SELECT 
    DATEDIFF(MILLISECOND,@StartTime,GETDATE())  
        AS [Time(ms): Autocommitted Tran] 
    ,s.num_of_writes - @num_of_writes  
        AS [Number of writes] 
    ,(s.num_of_bytes_written - @num_of_bytes_written) / 1024  
        AS [Bytes written (KB)] 
FROM 
    sys.dm_io_virtual_file_stats(db_id(),2) s; 
GO 
  
-- Explicit Tran 
DECLARE 
    @Id INT = 1 
    ,@StartTime DATETIME = GETDATE() 
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    ,@num_of_writes BIGINT 
    ,@num_of_bytes_written BIGINT 
  
SELECT @num_of_writes = num_of_writes, @num_of_bytes_written = 
num_of_bytes_written 
FROM sys.dm_io_virtual_file_stats(db_id(),2); 
  
WHILE @Id <= 10000 
BEGIN 
    BEGIN TRAN 
        INSERT INTO dbo.TranOverhead(Id, Col) VALUES(@Id, 'A'); 
        UPDATE dbo.TranOverhead SET Col = 'B' WHERE Id = @Id; 
        DELETE FROM dbo.TranOverhead WHERE Id = @Id; 
    COMMIT 
    SET @Id += 1; 
END; 
  
SELECT 
    DATEDIFF(MILLISECOND,@StartTime,GETDATE())  
        AS [Time(ms): Explicit Tran] 
    ,s.num_of_writes - @num_of_writes  
        AS [Number of writes] 
    ,(s.num_of_bytes_written - @num_of_bytes_written) / 1024  
        AS [Bytes written (KB)] 
FROM 
    sys.dm_io_virtual_file_stats(db_id(),2) s;

You can see the output from the code in my environment in Figure 11-8.
Explicit transactions were about three times faster and generated three times
less log activity than autocommitted ones.

Figure 10-8. EPerformance of explicit and autocommitted transactions
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As I have stated, proper transaction management with explicit transactions
can significantly improve your transaction-log throughput. Remember,
however, the impact of long-running transactions on blocking. Exclusive
(X) locks are held until the end of the transaction. Keep this locking
behavior in mind as you design your transaction strategy and write your
code, as well as considering the factors discussed in Chapter 8.

Unfortunately, changing transaction strategy in existing systems is not
always possible. If your system suffers from a large number of
autocommitted transactions and can tolerate a small amount of data loss,
consider using another feature: Delayed Durability. This feature is available
in SQL Server 2014 and above.

Delayed Durability
As you already know, SQL Server flushes the contents of the log block into
a log file at the time of commit. It sends a confirmation to the client only
after a commit record has been hardened to disk. This may lead to a large
number of small log-write I/O requests with autocommitted transactions.

Delayed durability changes this behavior, making commit operations
asynchronous. The client receives confirmation that the transaction has
been committed immediately, without having to wait for the commit record
to be hardened to disk. The commit record stays in the log buffer until one
or more of the following conditions occur:

The log block is full

A fully durable transaction in the same database is committed, and
its commit record flushes the contents of the log buffer to disk

A CHECKPOINT operation occurs

A sp_flush_log stored procedure is called

A log buffer flush operation is triggered based on the log
generation rate and/or timeout thresholds
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There is obviously some risk here. If SQL Server crashes before the commit
record is hardened, the data modifications from that transaction will be
rolled back at recovery, as if the transaction had never been committed at
all. However, other transactions would be able to see the data modifications
made by the delayed durability transaction between the commit and the
crash.

You can control delayed durability on both the database and transaction
levels. The database option DELAYED_DURABILITY supports three
different values:

DISABLED

This is the default option. It disables delayed durability in the database
regardless of the transaction durability mode. All transactions in the
database are always fully durable.

FORCED

This option forces delayed durability for all database transactions
regardless of the transaction durability mode.

ALLOWED

With this option, delayed durability is controlled at the transaction level.
Transactions are fully durable unless delayed durability is specified.
Listing 11-2 shows how to specify it at the transaction level.

Example 10-2. Controlling delayed durability on transaction level
BEGIN TRAN 
/* Do the work */ 
COMMIT WITH (DELAYED_DURABILITY=ON);

Delayed durability may be used in chatty systems with large numbers of
autocommitted transactions and insufficient log throughput. In most cases,
however, I prefer to avoid it. I use it as a last resort, only when all other log
throughput improvement techniques have been unsuccessful and only when
data loss is acceptable. Use with care!
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In-Memory OLTP Transaction Logging
Although covering In-Memory OLTP in detail would be outside the scope
of this book, I need to mention In-Memory OLTP transaction logging. As
opposed to row-based and column-based technologies, In-Memory OLTP
generates transaction log records at the time of the COMMIT operation and
only when the transaction is successfully committed. Logging is also
optimized. Transactions usually generate just one transaction log record, or
a few large ones, even when they modify large amounts of data. Those
records are stored in the regular log file and backed up with all the other log
records.

This behavior may change I/O patterns for log operations. In-Memory
OLTP log writes may lead to larger write requests, especially with large In-
Memory OLTP transactions. Moreover, the log files are continuously read
by In-Memory OLTP’s continuous checkpoint process, which parses log
records and updates In-Memory OLTP data persisted on disk.

You don’t need to worry about those details in most cases; however,
remember about I/O patterns when you design an I/O subsystem for
databases that use In-Memory OLTP.

VIRTUAL LOG FILES
Internally, SQL Server divides physical log files into smaller parts called
Virtual Log Files (VLF). SQL Server uses them as a unit of management,
and they can be active or inactive.

Active VLFs store the active portion of the transaction log, which contains
log records required to keep the database transactionally consistent, provide
point-in-time recovery, and support active SQL Server processes such as
transactional replication and AlwaysOn Availability Groups. An inactive
VLF contains the truncated (inactive) and unused parts of the transaction
log.

Figure 11-9 shows an example transaction log file and VLFs. The active
portion of the log starts with VLF3, the oldest active transaction in the
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system. In case of a rollback, SQL Server would need to access log records
generated by that transaction.

Figure 10-9. Transaction log and VLFss

In Figure 11-9, the only process that keeps VLF3 active is the active
transaction. When this transaction commits, SQL Server truncates the log,
marking VLF3 as inactive (Figure 11-10). Truncating the transaction log
does not reduce the size of the log file on disk; it just means that parts of the
transaction log (one or more VLFs) are marked as inactive and ready for
reuse.

Figure 10-10. Transaction log and VLFs – After commit

SQL Server uses VLFs as the unit of truncation. A VLF cannot be marked
as inactive if it contains the single log record from the active portion of the
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log. This is one reason why having very large VLFs is not a good idea.

Transaction-log truncation behavior is controlled by the Database Recovery
Model setting. There are three recovery models. Each guarantees that the
active portion of the log has enough data to keep the database consistent;
however, the models may provide different levels of recoverability in case
of disaster, and SIMPLE and BULK-LOGGED models may prevent you
from using some SQL Server technologies.

SIMPLE

In the SIMPLE recovery model, the log is truncated at checkpoint. All
data pages with LSNs prior to checkpoint LSN are saved on-disk. SQL
Server does not need to access log records prior to the checkpoint to re-
apply them to data pages in the event of an unexpected shutdown or
crash. Old active transactions and transaction replication may defer
truncation, keeping VLFs active.

In this recovery model, SQL Server does not use transaction log
backups. It prevents you from performing a point-in-time recovery and
may lead to data loss if either of the database files (data or log) becomes
corrupted. The recovery point (RPO) for the database, in this model,
becomes the time of the last full backup.

In some cases, such as when data is static or can be recreated from other
sources, the SIMPLE recovery model may be completely acceptable.
However, when you encounter this during a system health check, you
need to confirm this with the system stakeholders and discuss the
possibility of data loss.

FULL

In the FULL recovery model, SQL Server fully logs all operations in the
database and requires you to perform transaction log backups to
truncate the transaction log. Because the transaction log backups store
all log records in the database, this mode supports point-in-time
recovery, as long as the sequence of backup files (backup chain) is
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available. With a few exceptions, you will probably want to use the
FULL recovery model in production databases.

To support various SQL Server features and technologies that rely on
transaction log records, the FULL recovery model is required. Those
technologies may also defer truncation of the log, even when log
backups are taken. For example, if an AlwaysOn Availability Group
node goes offline, SQL Server will be unable to truncate the log until
the node is back and catches up with the replication.

BULK-LOGGED

The BULK-LOGGED recovery model works similarly to the FULL
model, except that some operations are minimally logged: for example,
index creation or BULK INSERT statements. With minimally logged
operations, SQL Server logs only the page allocation information in the
log file. While this reduces the log file usage, you cannot perform a
point-in-time recovery when minimally logged operations are present.
As with the SIMPLE recovery model, analyze the frequency of bulk-
logged operations and the risks of potential data loss when you see
databases with this recovery model in production.

You can analyze VLFs by using the sys.dm_db_log_info data management
view in SQL Server 2016 and above or with the DBCC LOGINFO
command in older versions of SQL Server. Listing 11-3 shows the code that
uses this view against one of the databases.

Example 10-3. Analyzing VLFs in the database
SELECT *  
FROM sys.dm_db_log_info(DB_ID()); 
  
SELECT  
    COUNT(*) as [VLF Count] 
    ,MIN(vlf_size_mb) as [Min VLF Size (MB)] 
    ,MAX(vlf_size_mb) as [Max VLF Size (MB)] 
    ,AVG(vlf_size_mb) as [Avg VLF Size (MB)] 
FROM sys.dm_db_log_info(DB_ID());
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Figure 11-11 shows the output from the view for a database with an
incorrect log file configuration that uses a 10% auto-growth setting. As you
can see, the database has a large number of unevenly sized VLFs.

Figure 10-11. Inefficient VLF configuration

Transaction Log Configuration
SQL Server works with transaction logs sequentially while writing and
reading a stream of log records. Even though the log may have multiple
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physical files, SQL Server does not usually benefit from them; in most
cases, a single log file is easier to maintain and manage.

There are a couple of edge cases when multiple log files can be beneficial:

SQL Server may zero-initialize log file in parallel. This could speed up
database creation or restoration if it uses large (multi-terabyte) log files.

If you want to place the transaction log on a fast but small drive, you can
create a file pre-allocating the size to fill the fast drive and add another
small log file on a larger and slower drive. SQL Server will use the file on
the fast drive most of the time; however, the small file will protect you if
the transaction log is full and not truncating.

It is better to manage transaction log size manually, avoiding the overhead
of zero-initializing at the time of auto-growth. You can analyze a
transaction log’s size and recreate the log, pre-allocating the size as needed.
Be sure to take log-intensive operations such as index maintenance into
account when you do the analysis.

As you learned stated in Chapter 1, you can rebuild the log by shrinking it
to the minimal size and then pre-allocate the space using chunks of 1,024 to
4,096 MB. I usually use 1,024MB chunks, which will create 128MB VLFs.
If I need very large log files – hundreds of gigabytes or even terabytes—I
might use larger chunks.

Do not restrict the log’s maximum size and auto-growth: you need to be
able to grow the log in case of emergencies.

Log Truncation Issues
Excessive transaction log growth is a common problem that junior or
accidental DBAs should handle. It happens when SQL can’t truncate the
transaction log and reuse the space in the log file. In such cases, the log file
continues to grow until it fills the entire disk, switching the database to
read-only mode and raising a "Transaction log full" error (error code 9002).
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The best way to handle this condition is to avoid it in the first place. As I
discussed in the Monitoring Disk Space Usage section in Chapter 9, it is
essential to monitor for low disk space condition and set up alerts. If you
pre-allocate the log file to fit the entire drive, monitor the amount of free
space in the log file and have it send an alert when it is low.

If you end up in a Transaction Log Full situation, my first and most
important advice is: Don’t panic. First, you need to analyze the root cause
of the issue and see if you can mitigate it quickly. You can do this by
looking at the log_reuse_wait_desc column in the sys.databases view, either
querying it directly or using the more sophisticated version shown in
Listing 11-4. This column shows you why the log is not truncated.

Example 10-4. Analyzing the log_reuse_wait_desc column in the
sys.databases view
CREATE TABLE #SpaceUsed 
( 
    database_id SMALLINT NOT NULL, 
    file_id SMALLINT NOT NULL, 
    space_used DECIMAL(15,3) NOT NULL, 
    PRIMARY KEY(database_id, file_id) 
); 
  
EXEC master..sp_MSforeachdb  
N'USE[?]; 
INSERT INTO #SpaceUsed(database_id, file_id, space_used) 
    SELECT DB_ID(''?''), file_id, 
         (size - CONVERT(INT,FILEPROPERTY(name, ''SpaceUsed''))) / 
128. 
FROM sys.database_files 
WHERE type = 1;'; 
  
SELECT  
    d.database_id, d.name, d.recovery_model_desc 
    ,d.state_desc, d.log_reuse_wait_desc, m.physical_name 
    ,m.is_percent_growth 
    ,IIF(m.is_percent_growth = 1 
        ,m.growth 
        ,CONVERT(DECIMAL(15,3),m.growth / 128.0) 
    ) AS [Growth (MB or %)] 
    ,CONVERT(DECIMAL(15,3),m.size / 128.0) AS [Size (MB)] 
    ,IIF(m.max_size = -1 
        ,-1 
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        ,CONVERT(DECIMAL(15,3),m.max_size / 128.0) 
    ) AS [Max Size(MB)] 
    ,s.space_used as [Space Used(MB)] 
FROM  
    sys.databases d WITH (NOLOCK)  
        JOIN sys.master_files m WITH (NOLOCK) ON 
        d.database_id = m.database_id 
    LEFT OUTER JOIN #SpaceUsed s ON 
        s.database_id = m.database_id AND 
        s.file_id = m.file_id 
ORDER BY  
    d.database_id;

Figure 11-12 shows example output from Listing 11-4.

Figure 10-12. Analysing log_reuse_wait_desc data

Let’s look at the most common reasons for deferred log truncation and
log_reuse_wait_desc values.

LOG_BACKUP Log Reuse Wait
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The LOG_BACKUP log reuse wait is one of the most common waits for
databases in the FULL and BULK-LOGGED recovery models. It indicates
that the log cannot be truncated due to a lack of recent transaction log
backup.

When you see this log reuse wait, check the status of the transaction log
backup job. Make sure it is not failing due to a lack of space in the backup
destination, or for any other reasons. It is also possible that log backup
frequency is not fast enough during log-intensive operations. For example,
index maintenance can generate enormous amounts of transaction log
records in a very short time.

You can mitigate the issue by performing a transaction log backup.
Remember to keep the backup file if you run this operation manually using
a non-standard backup destination. The file becomes part of your backup
chain and will be required for database recovery.

If you don’t use any technologies that rely on the FULL recovery model,
you can temporarily switch the database to SIMPLE mode, which will
truncate the transaction log. Remember that this will leave you exposed to
data loss. Switch back to the FULL recovery model and reinitialize the
backup chain by performing FULL and LOG backups as quickly as
possible.

Finally, in many cases, this situation may be avoided by properly
monitoring the health of the backup jobs. Set up alerts for continuous log
backup failures.

ACTIVE_TRANSACTION Log Reuse Wait
The ACTIVE_TRANSACTION log reuse wait indicates that the log cannot
be truncated due to the presence of the old active transaction. The most
common case for that is incorrect transaction management in the
application, which leads to runaway uncommitted transactions. For
example, the application may issue multiple BEGIN TRAN statements
without corresponding COMMIT for each of them.
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You can see the list of active transactions using the code from Listing 11-5.
The code may provide you multiple rows for each transaction, because it
gets log usage information on a per-database basis.

Example 10-5. Getting active transactions
SELECT 
    dt.database_id 
    ,DB_NAME(dt.database_id) as [DB] 
    ,st.session_id 
    ,CASE at.transaction_state 
        WHEN 0 THEN 'Not Initialized' 
        WHEN 1 THEN 'Not Started' 
        WHEN 2 THEN 'Active' 
        WHEN 3 THEN 'Ended (R/O)' 
        WHEN 4 THEN 'Commit Initialize' 
        WHEN 5 THEN 'Prepared' 
        WHEN 6 THEN 'Committed' 
        WHEN 7 THEN 'Rolling Back' 
        WHEN 8 THEN 'Rolled Back' 
     END AS [State] 
    ,at.transaction_begin_time 
    ,es.login_name 
    ,ec.client_net_address 
    ,ec.connect_time 
    ,dt.database_transaction_log_bytes_used 
    ,dt.database_transaction_log_bytes_reserved 
    ,er.status 
    ,er.wait_type 
    ,er.last_wait_type 
    ,sql.text AS [SQL] 
FROM 
    sys.dm_tran_database_transactions dt WITH (NOLOCK) 
        JOIN sys.dm_tran_session_transactions st WITH (NOLOCK) ON 
            dt.transaction_id = st.transaction_id 
        JOIN sys.dm_tran_active_transactions at WITH (NOLOCK) ON 
            dt.transaction_id = at.transaction_id 
        JOIN sys.dm_exec_sessions es WITH (NOLOCK) ON 
            st.session_id = es.session_id 
        JOIN sys.dm_exec_connections ec WITH (NOLOCK) ON 
            st.session_id = ec.session_id 
        LEFT OUTER JOIN sys.dm_exec_requests er WITH (NOLOCK) ON 
            st.session_id = er.session_id 
        CROSS APPLY 
            sys.dm_exec_sql_text(ec.most_recent_sql_handle) sql 
ORDER BY 
    dt.database_transaction_begin_timel
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You can kill the session that holds active transaction using the KILL
command. Later, you can analyze why the transaction was not properly
managed.

AVAILABILITY_REPLICA Log Reuse Wait
As you can guess by the name, the AVAILABILITY_REPLICA log reuse
wait may occur in systems that use AlwaysOn Availability Groups. In that
technology, the primary node communicates with the secondary nodes by
sending them the stream of transaction log records. The log cannot be
truncated until those records have been sent and replayed on the
secondaries.

The AVAILABILITY_REPLICA log reuse waits usually occur during
certain issues in Availability Groups: most commonly the secondary node
being unavailable, replication between the nodes falling behind, or
secondaries being unable to replay changes fast enough to keep up with the
load.

When you see this wait, check the health of the Availability Group. In most
cases, the only quick option to address the issue, besides adding more space
to the log, is removing a problematic secondary node from the Availability
Group. I’ll discuss Availability Groups in more detail in the next chapter.

DATABASE_MIRRORING Log Reuse Wait
The DATABASE_MIRRORING log reuse wait occurs in systems that use
database mirroring technology. This technology was a predecessor of
AlwaysOn Availability Groups and behaves similarly to it, communicating
through the stream of log records.

I’m not going to discuss how to troubleshoot database mirroring in this
book, since that technology has long been obsolete. Conceptually, it is
similar to troubleshooting Availability Groups issues.

As with AVAILABILITY_REPLICA reuse waits, analyze the health of
database mirroring when you see a DATABASE_MIRRORING reuse wait.
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REPLICATION Log Reuse Wait
The REPLICATION log reuse wait occurs when the Log Reader agent falls
behind while harvesting log records for transactional replication or Change
Data Capture (CDC) processes. When you see this log reuse wait, check the
status of the Log Reader agent and address the issues you discover.

One particular issue you may experience is the Log Agent query timing out.
By default, it is 30 minutes, which is sufficient in most cases. However, it
may not be enough when system processes very large data modifications
(millions of rows) in the replicated tables. You can increase the
QueryTimeout in the Log Agent profile if this is the case.

There are two “nuclear” options: you can remove the replication or mark
log records as harvested by using the sp_repldone command. Both
approaches may require you to reinitialize the replication later.

ACTIVE_BACKUP_OR_RESTORE Log Reuse Wait
The ACTIVE_BACKUP_OR_RESTORE reuse wait indicates that the log
cannot be truncated due to active database backup or restore processes,
regardless of what type of backup or restore is running.

One of the common cases for this wait is degraded performance of network
or backup storage during the large FULL backup. Check the status of the
active backup and restore jobs when you see this reuse wait.

Other Mitigation Strategies
It isn’t always possible to mitigate the root cause of an issue quickly.
Sometimes it isn’t even feasible. For example, removing unavailable replica
from Availability Group or disabling replication may lead to significant
work rebuilding them later.

You can add another log file or expand the size of the log drive as a
temporary solution. This allows the database to operate and gives you some
time to mitigate the root cause of the issue.
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Remember that you could have multiple issues preventing transaction log
truncation simultaneously. For example, a network outage could prevent the
server from communicating with Availability Group replicas and from
accessing the backup destination. Check the log_reuse_wait_desc value and
the amount of free space in the log file after you address each issue.

Finally, learn from the experience. Transaction Log Full issues are serious,
and you should avoid it at all costs. Do the root-cause analysis, evaluate
your monitoring strategy, and perform capacity planning to reduce the
possibility of this happening again.

Transaction Log Throughout
The impact of bad transaction log throughput is not always visible. While
any operation that changes something in the database writes to transaction
log, those writes are considered part of the operation. Engineers tend to
look at the “big picture” and performance of an entire operation as a whole,
overlooking the impact of individual components.

Think about index maintenance, for example. This is an extremely log-
intensive operation and bad log throughput greatly affects its performance.
Nevertheless, database administrators usually try to reduce index
maintenance impact and duration by adjusting its schedule or excluding
indexes from the maintenance, overlooking slow log writes. (There are
some exceptions; however, they are few and far between.)

It is also easy to overlook the impact of bad transaction log throughput on
the regular workload in OLTP systems. High log write latency increases
queries execution time, though people rarely look at it during query tuning.
In either case, improving transaction log performance always improves
system performance.

A word of caution, though: While improving transaction log performance is
always beneficial, it is not a magic solution to every problem. Nor will
impact always be visible to users. You may get better ROI from addressing
other bottlenecks first.
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From a wait statistics standpoint, you can look at WRITELOG and
LOGBUFFER waits: as I’ve mentioned, WRITELOG occurs when SQL
Server waits for the log write to complete. LOGBUFFER happens when
SQL Server does not have the available log buffer to cache the log records
or can’t flush log blocks to disk fast enough.

I wish I could tell you an exact percentage threshold when those waits start
to represent a problem, but that would be impossible. You’ll always see
them in the system, but you need to look at general I/O health and
throughput to estimate their impact. You’ll also often see WRITELOG wait
together with other I/O waits (PAGEIOLATCH, etc), especially when log
and data files are sharing the same physical storage and network I/O path.
In most cases, this is the sign that the I/O subsystem is either overloaded or
configured incorrectly.

As Chapter 3 discussed, the sys.dm_io_virtual_file_stats view provides
information about database files latency and throughput. I generally like to
see an average write latency in the log files of within 1 to 3 milliseconds
when network-based storage is used.

In high-end OLTP systems, you can place log files to DAS NMVe drives,
which should bring the latency into the sub-millisecond range. In some
edge cases, you can also utilize persistent memory technologies to reduce
latency even further.

Pay attention to the average size of log writes. Small writes are less efficient
and may impact log throughput. In most cases, those writes are a sign of
autocommitted transactions. You can reduce them with proper transaction
management or by enabling delayed durability (in cases when you can
tolerate a small amount of data loss).

There are several performance counters in the Databases object that you can
use to monitor transaction log activity in real time. These include:

Log Bytes Flushed/sec

The Log Bytes Flushed/sec counter shows how much data has been
written to the log file.

www.datasense.ir



Log Flushes/sec

The Log Flushes/sec counter indicates how many log write operations
have been performed every second. You can use it with the Log Bytes
Flushed/sec counter to estimate the average log write size.

Log Flush Write Time(ms)

The Log Flush Write Time(ms) counter shows the average time of a log
write operation. You can use it to see log write I/O latency in real time.

Log Flush Waits/sec

The Log Flush Waits/sec counter provides the number of commit
operations per second while waiting for the log records to be flushed.
Ideally, this number should be very low. High values indicate a log-
throughput bottleneck.

Keep in mind that log-intensive operations may dramatically change the
numbers. For example, an unthrottled index rebuild can generate an
enormous number of log records very quickly, saturating your I/O
subsystem and log throughput.

I like to run a SQL Agent job and collect data from the
sys.dm_io_virtual_file_stats view every 5 to 15 minutes, then persist it in
the DBA utility database. This provides detailed information about I/O
workload overtime. This information is extremely useful when you’re
analyzing transaction-log throughput.

In either case, you may need to look at a few different areas to improve
transaction log performance and throughput. First, analyze the hardware – it
is essential to use a fast disk subsystem with the log files. Next, look at the
log configuration, and try to reduce the overhead of large number of VLFs
and growth management. Finally, look for opportunities to reduce log
generation through proper transaction management and efficient database
maintenance jobs.
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Summary
SQL Server uses Write-Ahead Logging to support database consistency
requirements. Log records fare hardened to the log file before transactions
are committed. Insufficient transaction log throughput impacts system
performance. Put transaction logs to the fast low-latency storage when
possible.

Transaction log throughput issues present themselves with WRITELOG and
LOGBUFFER waits. Troubleshoot log performance when these waits
become noticeable. You can use sys.dm_io_virtual_file_stats view and
performance counters for troubleshooting.

You can improve transaction log performance by reducing the databases’
log generation rate. It can be done by tuning index maintenance strategy,
removing unnecessary indexes, refactoring database schema, and improving
transaction management. You can enable delayed durability for databases
that handle large numbers of autocommitted transactions and can sustain
small data losses.

Make sure that the log file is properly configured and the number of VLFs
in the file is manageable. Consider rebuilding the log if you detect
suboptimal configuration.

In the next chapter, we’ll talk about AlwaysOn Availability Groups and the
issues you may encounter when using them.

Troubleshooting Checklist
Review and adjust transaction log configuration for the databases

Analyze number of VLFs and rebuild logs if needed

Check databases’ recovery model and discuss disaster recovery
strategy with stakeholders

Reduce transaction log generation rate when possible

Analyze and improve transaction log throughput
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Chapter 11. AlwaysOn
Availability Groups

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 12th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at dmitri@aboutsqlserver.com.

AlwaysOn Availability Groups is the most common High Availability
technology used in SQL Server. It persists multiple copies of databases,
eliminating storage from being the single point of failure. It also allows you
to scale read workload through multiple readable secondary nodes.

In this chapter, I’ll provide an overview of how Availability Groups work
internally and explain how to troubleshoot common issues. You will learn
about the overhead introduced by synchronous replicas and readable
secondaries. Finally, I will discuss Availability Groups monitoring and cover
how to troubleshoot failover events.

AlwaysOn Availability Groups Overview
Perhaps the easiest way to explain how AlwaysOn Availability Groups work
is to look at the history of this technology. It was introduced in SQL Server
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2012 as the replacement and successor to Database Mirroring, which used to
have the internal Microsoft code name Real Time Log Shipping. That name
is a good description: both Database Mirroring and Availability Groups rely
on the stream of transaction log records to communicate. The primary node
sends log records to secondaries, which harden them in their transaction logs
and replay (redo) the changes in the databases.

Both technologies support the single primary node that handles write
workload. The Availability Group in Enterprise edition could handle read-
only workload, which you can scale across multiple secondary replicas. In
Standard Edition, the technology is limited to Basic Availability Groups,
which support just a single secondary replica. This replica is used strictly for
High Availability (HA) and/or Disaster Recovery (DR) purposes. Clients
cannot connect and read data from there.

Availability Groups support automatic failover for HA. They rely on
Windows Server Failover Cluster (WSFC) in Windows and on Pacemaker in
Linux. Prior to SQL Server 2017, you had to have WSFC to set up
Availability Groups. Starting with SQL Server 2017, you can use
Availability Groups without WSFC. Automatic failover is not supported in
that configuration.

Figure 12-1 shows an example of a three-node Availability Group setup in a
Windows environment. Availability Group Listener is the name of the
virtual network (similar to WSFC Cluster Endpoint) that provides a level of
abstraction for clients’ connectivity. In this configuration, clients can
connect to Availability Group without knowing which node is working as
the primary at that moment.
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Figure 11-1. Example of Availability Group setup
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Availability Groups work on the database-group level. They replicate the
group of databases, failing them over together to another node in the event
of failover. Each node in the topology stores its own copies of the data. This
avoids a situation where storage can be the single point of failure.

Unfortunately, Availability Groups do not replicate instance-level objects.
You need matching sets of logins, jobs, and all other instance objects on all
nodes to support HA properly and ensure that it can operate after failover.
Make sure you validate the configuration as part of any system health check,
and regularly test HA implementation in production systems.

NOTE
The dbatools open source library provides many PowerShell cmdlets to replicate
instance-level objects and validate the setup.

Now let’s look at the key components of Availability Group technology –
send and redo queues.

Availability Group Queues
Availability Group nodes communicate through the stream of transaction log
records. Secondary nodes write those records to transaction logs and
asynchronously apply the changes into the databases they host.

Figure 12-2 shows a high-level view of this process. The key components
here are send queues and redo queues.

Send Queue

Send queues exist on the primary node. They store log records that need
to be sent to the secondary nodes. There are separate queues per database
for each secondary node in the Availability Group.

Redo Queue
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Redo queues exist on secondary nodes. They store the log records for
changes that need to be applied to the databases by an asynchronous
redo process. Each database on each secondary node has its own redo
queue.
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Figure 11-2. Availability Group queues

In a healthy Availability Group, send and redo queues stay as small as
possible. A large send queue increases the amount of possible data loss in
asynchronous replicas and may significantly increase blocking with
synchronous ones (more on that later in this chapter). A large redo queue
will impact database recovery time and increase replication latency, which in
turn can affect queries on readable secondary nodes.

Finally, large send and redo queues also impact transaction-log truncation.
SQL Server will not truncate a log beyond the largest send-queue starting
point. Nor (though this is not documented) will it truncate the log beyond the
oldest redo starting point across all secondary nodes.

Listing 12-1 shows you the code you can use to monitor the health of
Availability Groups. You need to run it on the primary node to get the right
results.

Listing 12-1. Availability Group monitoring code

SELECT 
    ar.replica_server_name as [Replica] 
    ,DB_NAME(drs.database_id) AS DB 
    ,drs.synchronization_state_desc as [Sync State] 
    ,ars.synchronization_health_desc as [Health] 
    ,ar.availability_mode as [Syncronous] 
    ,drs.log_send_queue_size 
    ,drs.redo_queue_size 
    ,ISNULL( 
        GhostReplicaState.max_low_water_mark_for_ghosts - 
            drs.low_water_mark_for_ghosts,0 
    ) AS [water_mark_diff] 
    ,drs.log_send_rate 
    ,drs.redo_rate 
    ,pri.last_commit_time AS primary_last_commit_time 
    ,IIF(drs.is_primary_replica = 1 
        ,pri.last_commit_time 
        ,drs.last_commit_time 
    ) AS node_last_commit_time 
    ,IIF(drs.is_primary_replica = 1 
        ,0 
        ,DATEDIFF(ms,drs.last_commit_time,pri.last_commit_time) 
    ) AS commit_latency 
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FROM  
    sys.availability_groups ag WITH (NOLOCK)  
        JOIN sys.availability_replicas ar WITH (NOLOCK) ON  
            ag.group_id = ar.group_id 
        JOIN sys.dm_hadr_availability_replica_states ars WITH 
(NOLOCK) ON  
            ar.replica_id = ars.replica_id 
        JOIN sys.dm_hadr_database_replica_states drs WITH (NOLOCK) 
ON  
            ag.group_id = drs.group_id AND  
            drs.replica_id = ars.replica_id 
        LEFT JOIN sys.dm_hadr_database_replica_states pri WITH 
(NOLOCK) ON  
            pri.is_primary_replica = 1 AND  
            drs.database_id = pri.database_id 
        OUTER APPLY 
         ( 
            SELECT MAX(drs2.low_water_mark_for_ghosts) AS  
                    max_low_water_mark_for_ghosts 
            FROM sys.dm_hadr_database_replica_states drs2 WITH 
(NOLOCK) 
            WHERE drs.database_id = drs2.database_id 
        ) GhostReplicaState 
WHERE  
    ars.is_local = 0 
ORDER BY  
    replica_server_name, DB;

Figure 12-3 shows the output from Listing 12-1 on one of the production
servers.

www.datasense.ir



www.datasense.ir



Figure 11-3. Output from Availability Group monitoring script

You need to monitor several things:

Synchronization Health and State

Synchronization health and state, provided by the
synchronization_health_desc and synchronization_state_desc columns,
indicate if the Availability Group is healthy and if the data is
synchronized. Those are the key metrics to monitor.

Send and Redo Queue Sizes

You can see send and redo queue sizes in the log_send_queue_size and
redo_queue_size columns output. Both queues should be as small as
possible.

Replication Lag

You can monitor replication lag by comparing the last commit times on
the primary and secondary nodes. The data is available in the
last_commit_time columns (these appear as primary_last_commit_time
and node_last_commit_time columns in the script output). Both the send
and redo queues affect the lag: the more data you have in the queues, the
higher the lag will be. Obviously, the lag should be as small as possible,
especially if you are using readable secondaries.

The sys.dm_hadr_database_replica_states view has a
secondary_lag_seconds column; however, I have found it less accurate
than calculating lag based on last_commit_time data.

Ghost Cleanup Lag

Large send and redo queues and long active transactions on the readable
secondaries will defer the ghost cleanup and version store cleanup
processes on the primary node, impacting system performance. From a
monitoring standpoint, you can detect that condition by analyzing the
difference in low_water_mark_for_ghosts values between the primary
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and secondary nodes. That data is exposed by the water_mark_diff
column in the script.

The impact of readable secondaries on system performance is an
important topic which I’ll cover later in this chapter.

I’d like to repeat: it is extremely important to monitor the health and
performance of the Availability Groups in your setup. There are many things
that can go wrong. I’ll talk about a few of them in this chapter.

You can build the monitoring code using the script from Listing 12-1. You
can compare the metrics returned by the script against pre-defined
thresholds, triggering alerts as needed. Tune the thresholds for your specific
workload and infrastructure. For example, asynchronous off-site replicas
may need higher send queue alert thresholds than synchronous on-site HA
replicas.

You can also obtain queue sizes and several other Availability Group
performance metrics through performance counters in the Database Replica
performance object. You can build alerting around them; however, this
method is more susceptible to load spikes. For example, large batch
operations may trigger short spikes in log generation, leading to unnecessary
alerts.

Let’s look at a few common issues you may encounter with Availability
Groups.

Synchronous Replication and the Danger of
the HADR_SYNC_COMMIT Wait
Availability Groups allow you to configure replication using either
synchronous or asynchronous commit modes. The synchronous mode allows
you to avoid data loss, but at the cost of additional commit latency.

There is a common misconception that, in synchronous mode, data on the
secondaries is updated synchronously with the primary node. This is not the

www.datasense.ir

https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-database-replica


case. Only the log records are hardened synchronously. The redo process
will still be asynchronous and can fall behind.

Figure 12-4 shows the replication data flow in synchronous commit mode.
As you can see, the client does not receive confirmation that the transaction
is committed until the primary node gets acknowledgement that commit log
records have been hardened on the secondaries. The primary node waits for
the confirmation, generating an HADR_SYNC_COMMIT wait.
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Figure 11-4. Synchronous commit data flow

This behavior introduces subtle, hard-to-understand concurrency issues.
SQL Server keeps transactions active and does not release locks until it
receives commit acknowledgements. This increases the chances of
competing lock requests and blocking.

That increase in transaction duration may not always be visible in normal
circumstances. However, it may become an issue during log-intensive
operations, when the primary node does not have enough throughput to send
log records to secondaries and send queues start to grow.

You can duplicate this problem by running an unthrottled clustered index
rebuild on a large table with LOB columns (tables with LOB columns will
produce more log records). If your server is powerful enough, you’ll notice
that the send queues for synchronous replicas start growing. This will lead to
extensive blocking in busy OLTP systems, consume available workers and
likely bring the system down in short amount of time. To make matters
worse, cancelling the index rebuild will not solve the issue immediately,
because the primary will still need to transmit all log records from the send
queue.

NOTE
You can see the short YouTube video I published to demonstrate the problem

It is common to see HADR_SYNC_COMMIT become one of the top waits
in busy OLTP systems. This situation may be legitimate and does not always
represent the problem. Nevertheless, you need to estimate the impact on
your system of this wait and the overhead of a synchronous commit.

Look at the average resource wait time of an HADR_SYNC_COMMIT wait
in the output from sys.dm_os_wait_stats view (Listing 2-1). That value
represents the average time SQL Server waits for acknowledgement that log
records have been hardened on the secondary nodes. It should be as low as
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possible, ideally no more than a couple milliseconds. Its duration depends on
three key factors:

Network performance

Both log records and acknowledgement messages go through the
network, so good network throughput is essential to support Availability
Group replication. You can look at network performance counters, such
as Bytes Received/sec, Bytes Sent/sec and Current Bandwidth, to
analyze and troubleshoot possible network issues.

In some cases, you might build a separate network for Availability
Groups, segregating replication from client traffic. If so, make sure that
these networks are physically separated from each other; if they share
the same physical LAN adapters, this topology would not provide you
many benefits as the traffic from both networks will go to the same
physical infrastructure.

I/O performance on secondary nodes

Synchronous replicas harden the log records in the log files before
sending an acknowledgement back to primary. Insufficient I/O
performance there will increase commit latency. Look at the log-write
stalls in the sys.dm_io_virtual_file_stats view. You can troubleshoot I/O
performance using the methods discussed in Chapter 3.

CPU bandwidth

Both the primary and secondary nodes need enough CPU bandwidth to
handle replication. Make sure that servers are not overloaded and that
schedulers are evenly balanced across NUMA nodes (Listing 2-4).

As a general rule, I do not recommend using readable synchronous
replicas. Client queries add additional load and can impact replication
throughput. Think about non-optimized queries that overload the I/O
subsystem and thus increase log-write latency. It is usually better to build
separate asynchronous replicas to scale the read workload instead.
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You can improve Availability Group performance by reducing the number of
log records to process. I mentioned a few ways to do that in the previous
chapter – all of them are applicable here.

Finally, if you are still using SQL Server 2012 or 2014, consider upgrading
to the newer versions. SQL Server 2016 introduced performance
enhancements in many areas, including Availability Groups. Newer versions
of SQL Server will provide even better results.

Figure 12-5 shows the waits on one production server before and after SQL
Server 2016 upgrade. Both snapshots were taken in the SolarWinds DPA
application, with the server handling the same workload. As you can see,
SQL Server 2016 reduced HADR_SYNC_COMMIT waits to less than a
third of their previous levels. The upgrade also reduced CPU load by 35
percent without any further changes to the applications.

www.datasense.ir



www.datasense.ir



Figure 11-5. Waits before and after SQL Server 2016 upgrade

Usually, analyzing your network and I/O performance and your CPU load
provides you enough information to troubleshoot bad Availability Group
throughput. In some cases, however, you need to go further and look at the
performance of individual operations. You can do this by analyzing
Availability Group xEvents.

Availability Group Extended Events
SQL Server exposes large number of Extended Events (xEvents) you can
use while troubleshooting Availability Group performance. Table 12-1
shows the most important ones.
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xEvent Location Description

 
            
 
                
log_flush_start 
              

Primary
 Secondary

Node starts hardening log records in transaction log 
files

 
            
 
                
log_flush_complete 
              

Primary
 Secondary

Node finishes hardening log records in transaction 
log files

 
            
 
                hadr_log_block_compression 
              

Primary Primary node compresses a log block 

 
            
 
                
hadr_log_block_decompression 
              

Secondary Secondary node decompresses a log 
block

 
            
 
                

Primary Primary node captures log block for the replication. 
Mode column indicates the action:
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hadr_capture_log_bloc
k 
              

 1: Log block is captured
 2: Log block is enqueued into a send queue
 3: Log block is dequeued and ready to be send
 4: Log block is routed to proper replica

 
            
 
                ucs_connection_send_msg 
              

Primary
 Secondary

A log block is sent to transport

 
            
 
                
hadr_transport_receive_log_block_
message 
              

Secondary Secondary receives the log block. Mode 
column indicates the action:
 1: Log block is received
 2: Log block is enqueued in a working 
queue

 
            
 
                
hadr_send_harden_lsn_m
essage 
              

Secondary Secondary is sending acknowledgement that a log 
block is hardened. Mode column indicates:
 1: Message is created
 2: Message is ready to be sent
 3: Message is routed to primary

 
            
 
                hadr_lsn_send_complete 
              

Secondary Acknowledgement has been sent

 
            
 
                
hadr_receive_harden_lsn_messag
e 
              

Primary Primary receives an acknowledge message. 
Mode field indicates:
 1: Message is received
 2: Message is dequeued for processing

 
            
 
                
hadr_db_commit_msg_harden 
              

Primary Acknowledgement has been 
processed
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hadr_db_commit_
mgr_harden_still_
waiting 
              

Primary Indicates that a commit acknowledgement has not been 
received after 2 seconds. This should not happen in 
normal circumstances and usually indicates an issue with 
Availability Groups.

 
          

Figure 12-6 shows the sequence of events that occur during synchronous
Availability Groups communication. On the primary node, SQL Server starts
the log flush and simultaneously sends the log block to the secondary node.
The secondary node decodes the block, hardens it in the log file, and then
constructs and sends an acknowledgement message back to the primary.
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Figure 11-6. Availability Groups communication flow in synchronous mode

Listing 12-2 shows two xEvent sessions you can run to capture xEvents
from Table 12-1. A word of caution: those sessions can collect a large
number of events. Do not keep them running outside of the troubleshooting.

I am not including an ucs_connection_send_msg event here, because it
introduces a lot of noise. Consider including it if you troubleshoot possible
network performance issues.

Listing 12-2. Creating xEvent sessions for Availability Group performance
troubleshooting.

-- Create on primary node 
CREATE EVENT SESSION [AlwaysOn_Tracing_Primary] ON SERVER  
ADD EVENT sqlserver.hadr_capture_log_block, 
ADD EVENT sqlserver.hadr_db_commit_mgr_harden, 
ADD EVENT sqlserver.hadr_db_commit_mgr_harden_still_waiting, 
ADD EVENT sqlserver.hadr_log_block_compression, 
ADD EVENT sqlserver.hadr_log_block_send_complete, 
ADD EVENT sqlserver.hadr_receive_harden_lsn_message, 
ADD EVENT sqlserver.log_flush_complete, 
ADD EVENT sqlserver.log_flush_start 
ADD TARGET package0.ring_buffer(SET max_events_limit=
(0),max_memory=(16384)); 
GO 
  
-- Create on secondary node 
CREATE EVENT SESSION [AlwaysOn_Tracing_Secondary] ON SERVER  
ADD EVENT sqlserver.hadr_apply_log_block, 
ADD EVENT sqlserver.hadr_log_block_decompression, 
ADD EVENT sqlserver.hadr_lsn_send_complete, 
ADD EVENT sqlserver.hadr_send_harden_lsn_message, 
ADD EVENT sqlserver.hadr_transport_receive_log_block_message, 
ADD EVENT sqlserver.log_flush_complete, 
ADD EVENT sqlserver.log_flush_start 
ADD TARGET package0.ring_buffer(SET max_events_limit=
(0),max_memory=(16384));

You can use the log_block_id and database_id fields in both sessions to
correlate session data. There is a catch, though: in
hadr_send_harden_lsn_message, hadr_receive_harden_lsn_message, and
hadr_lsn_send_complete events, the log_block_id will be higher than in

www.datasense.ir



previous events. This is due to how xEvents collects the data. The difference
in values depends on the load in the database; however, it won’t exceed 120.

Figure 12-7 shows the events collected in my test environment on the
primary node. You may notice that, first, a few events were collected out of
order on the target. They were all fired very rapidly and have the same
timestamp.

Figure 11-7. xEvents from primary node

Figure 12-8 shows the events collected on the secondary node. There is a
small gap in timestamps with the primary node, because I was unable to
synchronize time perfectly between the servers.
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Figure 11-8. xEvents from secondary node

The timing of individual operations can help you identify possible
bottlenecks. For example, a slow disk subsystem on the secondary would
introduce a delay between the log_flush_start and log_flush_complete
events. Insufficient CPU throughput may prolong
hadr_log_block_compression and hadr_log_block_decompression events
when compression is used. Analyze the data and cross-check it with other
metrics.

Compression behavior varies in different versions of SQL Server. SQL
Server 2012 and 2014 compressed all Availability Group traffic by default.
In SQL Server 2016 and above, however, compression is used only in
asynchronous communication. Synchronous commit, on the other hand, does
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not compress the traffic. Nevertheless, you can still see compression and
decompression xEvents generated even when the action is not performed.

There are three trace flags that you can use to change compression behavior
in SQL Server 2016 and above. They may shift the workload and
bottlenecks between CPU and network, so use them with care!

T9592

This trace flag enables compression of the traffic between synchronous
replicas. Consider enabling it if you have to support synchronous
replicas over a slow network. Keep in mind that compression adds CPU
overhead on both nodes and may increase HADR_SYNC_COMMIT
latency in fast networks.

T1462

This trace flag disables compression of the traffic between asynchronous
replicas. This may reduce CPU load on the nodes in very busy OLTP
systems, at the cost of additional network traffic.

T9567

SQL Server does not use compression when it performs automatic
seeding of the new nodes in Availability Groups. The T9567 flag allows
you to enable it. This can speed the up automatic seeding process, but at
the cost of additional CPU load on the primary node.

Finally, modern versions of SSMS provide tools to get similar latency data.
You can do this by clicking Collect Latency Data in the Availability Group
dashboard. This action creates and runs xEvent sessions on the nodes that
collect Availability Group events.

The sessions will run for two minutes, using a file target to store the data.
After that, SQL Server processes the data and allows you to access it
through the standard reports in the Availability Group popup menu in SSMS
Object Explorer.
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There are some limitations to SSMS data collection: First, it works only
when you connect to the servers using Windows Authentication and have
sysadmin permissions on all replicas. It also relies on SQL Server Agent
running on all servers. Finally, it uses file targets, which may add an
overhead on busy servers with heavy Availability Groups traffic.
Nevertheless, SSMS data collection is often easier than manual xEvent
analysis.

Asynchronous Replication and Readable
Secondaries
In contrast to synchronous commit mode, in asynchronous mode, primary
does not wait for confirmation that the log records have been hardened on
the secondaries. A transaction becomes committed when the commit log
record is saved in the primary’s transaction log

Figure 12-9 shows replication data flow in asynchronous mode. The size of
the send queue on primary dictates the possible data loss and recovery point
objective (RPO) in the event of an SQL Server crash.
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Figure 11-9. Asynchronous commit data flow

The Enterprise Edition of SQL Server allows you to scale the read workload
by running queries on the secondary nodes. This is a great feature that helps
to improve system throughput and reduces the load on the primary node.
There are a few factors you need to consider, however.

As I have mentioned, be extremely careful when querying nodes that use
synchronous replication. The overhead of the queries may increase
replication latency and HADR_SYNC_COMMIT waits, impacting the
primary node. It is always better to leave synchronous nodes alone and build
asynchronous nodes to scale the read workload.

Regardless of the replication mode, the data on secondaries will always be
behind primary, because the redo process that applies changes to the
database is asynchronous. In normal circumstances the lag may be very
small—measured in milliseconds or even microseconds; however, it may
grow during log-intensive operations such as index maintenance or large
batch processing.

Do not use secondary nodes for critical queries that need up-to-date data.
Remember that you cannot guarantee that the lag is always going to be
small. Neither should you split the read and write queries across the nodes
within a single business transaction. This will lead to inconsistent results.

Next, let’s look at another, less well known issue related to readable
secondaries that can affect the primary node in quite unexpected ways.

The Impact of the Readable Secondaries
SQL Server always uses the SNAPSHOT isolation level for queries on the
secondary nodes, ignoring SET TRANSACTION ISOLATION LEVEL
statements and isolation-level table hints. It allows you to eliminate the
possibility of readers being blocked by writers. This happens even if you do
not enable the ALLOW_SNAPSHOT_ISOLATION database option.

Using the SNAPSHOT isolation level also means that SQL Server will use
row versioning on the secondary nodes. As you remember from Chapter 8,
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SQL Server will start using version store in tempdb and also maintain 14-
byte version store pointers in modified data rows.

In the Availability Group infrastructure, the databases on the primary and
secondary nodes are exactly the same, so it is impossible to maintain row
versioning on secondary nodes only. SQL Server needs to allocate space for
14-byte version store pointers on the primary node for the databases to
match, even if optimistic isolation levels are not enabled in the database.

SQL Server does not use tempdb version store on primary nodes if you don’t
enable the READ_COMMITTED_SNAPSHOT or
ALLOW_SNAPSHOT_ISOLATION options. Nevertheless, it adds extra 14
bytes to the data rows during data modifications, which may lead to
additional page splits and index fragmentation.

Unfortunately, readable secondaries also introduce another phenomenon that
is less well known: long-running SNAPSHOT transactions on secondary
nodes may defer the ghost and version store cleanup tasks on the primary.
Such transactions work with a snapshot of the data at the time the
transaction started. SQL Server cannot remove deleted rows and reuse the
space because of the possibility that SNAPSHOT transaction will need to
access the old versions of the rows.

The same applies to large send and redo queues. SQL Server cannot clean up
deleted rows, because the secondaries could start a SNAPSHOT transaction
before replaying the ghost cleanup log records. This can become an issue if
the replica goes offline or constantly falls behind in applying the changes.

Take a look at the example in Listing 12-3. This will create two tables in the
database. Table T1 will have 65,536 rows and use 65,536 pages: one row per
data page.

Listing 12-3. Readable secondaries: Table creation

CREATE TABLE dbo.T1  
(     ID INT NOT NULL,  
    Placeholder CHAR(8000) NULL,  
    CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED(ID)  
);  
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CREATE TABLE dbo.T2  
(  
    Col INT  
);  
  
;WITH N1(C) AS (SELECT 0 UNION ALL SELECT 0) -- 2 rows  
,N2(C) AS (SELECT 0 FROM N1 AS T1 CROSS JOIN N1 AS T2) -- 4 rows  
,N3(C) AS (SELECT 0 FROM N2 AS T1 CROSS JOIN N2 AS T2) -- 16 rows  
,N4(C) AS (SELECT 0 FROM N3 AS T1 CROSS JOIN N3 AS T2) -- 256 rows  
,N5(C) AS (SELECT 0 FROM N4 AS T1 CROSS JOIN N4 AS T2 ) -- 65,536 
rows  
,IDS(ID) AS (SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) 
FROM N5)  
INSERT INTO dbo.T1(ID)  
    SELECT ID FROM IDS;

Next, let’s start a transaction on the secondary node and run the query
against table T2, as shown in Listing 12-4. Even though I am using explicit
transactions, the same behavior will occur if there is a long-running
statement in an autocommitted transaction.

Listing 12-4. Readable Secondaries: Starting transaction on secondary node

BEGIN TRAN  
    SELECT * FROM dbo.T2;

Next, using the code in Listing 12-5, delete all data from T1 table and then
run the query that will do the clustered index scan on the primary node.

Listing 12-5. Readable Secondaries: Deleting data and performing clustered
index scan

DELETE FROM dbo.T1;  
-- Wait 1 minute   
WAITFOR DELAY '00:01:00.000';  
  
SET STATISTICS IO ON  
SELECT COUNT(*) FROM dbo.T1;  
SET STATISTICS IO OFF   
--Output: Table 'T1'. Scan count 1, logical reads 65781

Even though the table is empty, the data pages have not been deallocated.
This leads to significant I/O overhead on the primary node.
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Finally, let’s look at the index statistics, using the code from Listing 12-6.

Listing 12-6. Readable Secondaries: Checking index stats

SELECT  
    index_id, index_level, page_count 
    ,record_count, version_ghost_record_count 
FROM  
    sys.dm_db_index_physical_stats 
    ( 
        DB_ID() 
        ,OBJECT_ID(N'dbo.T1') 
        ,1 
        ,NULL 
        ,'DETAILED' 
    );

Figure 12-10 shows the output of the query. The leaf index level shows
65,536 rows in the version_ghost_record_count column. This column
contains the number of ghosted rows that cannot be removed due to active
transactions that rely on row versioning. In our case, this transaction runs on
a different (secondary) node.

Figure 11-10. Index Statistics

This behavior may increase I/O and CPU load, because SQL Server needs to
scan ghosted data rows during query execution. It also increases the size of
tempdb since the version store there is not being cleaned up.

The impact on I/O and CPU load may be especially high if the system is
implementing message processing based on in-database queueing. The
tables that store the messages are usually small, but the data there is
extremely volatile. Ghost records accumulate quickly, driving up CPU and
I/O load.

I encountered this issue for the first time in such a scenario. One of the
tables was used for message processing, handling about 100 inserts and
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deletes every second. Runaway reporting transaction on the secondary node
increased CPU load on primary by 30 percent overnight without any
changes in the system workload. By the time I detected the issue, the table
had more than a million data pages storing just a handful of rows. The
queries that read the messages scanned all those data pages, driving the CPU
load up.

Unfortunately, it is very common for people to offload non-optimized
reporting queries to secondary nodes without understanding the potential
consequences. Remember this and monitor ghost cleanup lag with the
water_mark_diff column from Listing 12-1. The alert threshold will depend
on your system workload. Analyze the overhead of deferred ghost cleanup
and set it accordingly.

Last but not least, do not enable readable secondaries unless you are
querying them. They introduce performance impact and increase licensing
cost. There is no need to incur that unless you are using the feature.

Parallel Redo
In SQL Server 2012 and 2014, the redo process in Availability Groups used
one thread per database. In high-end OLTP systems with extremely high rate
of modifications, that led to insufficient redo throughput, making it hard to
use Availability Groups at all.

Starting with SQL Server 2016, the redo process may become parallel with
SQL Server using multiple threads to replay the log records. The number of
threads that perform redo process depends on the number of CPUs on the
server and the number of databases in Availability Group.

In Availability Group with multiple databases, only the first six use parallel
redo. Their order usually depends on when the databases joined the
Availability Group. Unfortunately, this feature is poorly documented and
may change in future versions of SQL Server.
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NOTE
SQL Server 2016 and 2017 does not use parallel redo with the databases that use In-
Memory OLTP. This restriction has been removed in SQL Server 2019.

Parallel redo is a great feature—when it works. Unfortunately, it doesn’t
always work. I’ve experienced quite a few cases it suddenly stopped
working, leading to significant performance degradation of redo process.
Usually it occurs in busy OLTP systems that use readable secondaries.

The issue usually presents as elevated CPU usage, with constantly growing
redo queues. You are also likely to see multiple waiting tasks, usually
including one or more of the following wait types in the
sys.dm_os_waiting_tasks and the sys.dm_exec_requests views output:

DIRTY_PAGE_TABLE_LOCK

DPT_ENTRY_LOCK

PARALLEL_REDO_TRAN_TURN

PARALLEL_REDO_FLOW_CONTROL

You can disable parallel redo with server-level trace flag T3459, using the
command DBCC TRACEON(3459,-1). You can make this change online
without restarting the server. However, disabling the trace flag and switching
back to parallel redo does requires restarting in the builds prior to SQL
Server 2017 CU9, SQL Server 2016 SP2 CU2 and SQL Server 2016 SP1
CU10.

As usual, apply the latest cumulative update to SQL Server. There are many
fixes related to parallel redo, especially in SQL Server 2016 and 2017.

Troubleshooting Failover Events
Automatic failover is a great feature that improves High Availability. It also
introduces a few tasks. When an unintended failover occurs, you’ll need to
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find the root cause. In other cases, you may need to troubleshoot why
failover did not occur as expected.

The troubleshooting strategy is the same in both cases: collect information,
then analyze it afterwards. I will discuss the sources of that information later
in this section. First, though, let’s get a high-level overview of how SQL
Server interacts with Windows Failover Cluster.

Availability Groups and Windows Server Failover Cluster
Availability Groups rely on WSFC services to support automatic failovers.
They become the cluster resource in the cluster, which manages them
similarly to other services. This means that if WSFC has a problem—for
example, if it loses the quorum—underlying Availability Groups will also be
affected.

There are two key checks in cluster resource management: IsAlive and
IsHealthy. The cluster executes IsAlive and IsHealthy checks frequently,
validating that the resource is online and it is healthy, operating as expected.

To put things in perspective, if an IsAlive check fails, the cluster may initiate
the failover or shut down the SQL Server instance. It could also trigger those
actions if it decides that SQL Server is unhealthy, based on the results of the
IsHealthy check; if it finds a large number of access violation errors; or if
the server shows extremely high and prolonged resource consumption.

Both checks are done by SQL Server resource DLL, which constantly
communicates with the SQL Server instance. The IsAlive check is done
though the Shared Memory protocol, which allows two processes to share
memory for communication. The frequency of communication is controlled
by the LeaseTimeout property in the Availability Group cluster resource. By
default, LeaseTimeout is set to 20,000 milliseconds; the IsAlive check runs
every 5 seconds, just 25% of that value.

The lease mechanism exists only on the primary node, and you can think of
it as the Availability Group’s heartbeat. When the cluster does not receive
confirmation that the lease is active, it considers the lease to be expired and
considers Availability Group unhealthy. It stops accepting write requests in
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order to avoid split brain, a condition when multiple nodes behave as the
primary replica, accepting write requests. Next, the Availability Group tries
to failover, assuming WSFC itself is healthy.

The IsHealthy check, on the other hand, relies on a stored procedure in the
sp_server_diagnostics system that provides health information about the
general system and Availability Group, as well as SQL Server component
status and resource utilization. The frequency of the check is controlled by
the HealthCheckTimeout property in the Availability Group cluster resource.
By default, it is 30,000 milliseconds; the frequency of the IsHealthy check is
one-third of that value, or 10 seconds.

Another property, FailureConditionLevel, specifies the failure condition for
the health check. It usually has the following values:

1. OnServerDown: The health check validates that Availability Group
is online. The validation succeeds if the IsAlive check passes.

2. OnServerUnresponsive: The health check fails if no data is received
from sp_server_diagnostics procedure within the time specified in
HealthCheckTimeout.

3. OnCriticalServerError: The health check fails if any of the major
SQL Server components returns an error. This is the default setting.

4. OnModerateServerError: The health check fails if the resource
component returns an error.

5. OnAnyQualifiedFailureConditions: The health check fails if the
query processing component returns an error.

As you can guess, the higher the value, the more often failover will be
triggered. In most cases, you don’t need to change the
FailureConditionLevel parameters; however, you may decide to temporarily
decrease them when you are troubleshooting failovers due to extremely high
resource utilization. I do not recommend increasing the parameters unless
you want to failover at the first sign of a possible issue, even when the issue
could resolve itself.
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You can increase LeaseTimeout if you are experiencing connectivity issues
between cluster nodes. Use the following formula to determine the
maximum possible value for the property:

LeaseTimeout <= (SameSubnetDelay * SameSubnetThreshold) * 2

SameSubnetDelay and SameSubnetThreshold are cluster-level properties
that indicate the cluster’s heartbeat frequency and the number of times it can
be missed before the cluster considers it unhealthy. You can tune those
parameters, as well as LeaseTimeout.

NOTE
The CrossSubnetDelay and CrossSubnetThreshold parameters control the heartbeat
parameters in the cross-subnet cluster. Make sure that the SameSubnetDelay and
SameSubnetThreshold values do not exceed them.

Increase HealthTimeout if you do not want to failover when short spikes in
resource utilization cause SQL Server to become unresponsive. Using
virtualization and VM backup software to pause virtual machines while the
backup is in progress can also help. Be careful: this may delay the failover in
the cluster.

As I have noted, SQL Server on Linux relies on an external service,
Pacemaker, for failover support. Conceptually, Pacemaker behaves similarly
to WSFC; however, SQL Server cannot communicate with Pacemaker
directly. The implementation relies on s polling mechanism, with Pacemaker
regularly querying SQL Server and database states.

Troubleshooting Failovers
So why do failovers occur? You may have already guessed some of the
reasons. The most common are:

Hardware issues

WSFC issues, such as cluster quorum loss due to network or connectivity
problems
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Lease expiration, which can be triggered by WSFC issues like extremely
high load on the server or an unresponsive OS

Health check timeouts, often triggered by high SQL Server load (CPU
and/or disk), high numbers of access violation errors and thread dumps, an
unresponsive OS, a frozen VM, or other factors

Fortunately, SQL Server and your OS provide a lot of information to help
you research the cause. Let’s look at several of them now.

AlwaysOn_health xEvent Session

The AlwaysOn_health xEvent session is created when you provision
Availability Groups. This session contains the set of events that track the
health of Availability Groups, the state and role changes of the nodes,
and Availability Group-related DDL operations. It also includes several
events that track high-severity errors: for example, the
availability_group_lease_expired event is generated when the lease
expires.

The AlwaysOn_health session is the great place to start troubleshooting.
It may not show you the root cause of the incident; however, it gives you
information about what happened with Availability Group and when, as
well as what actions were taken. Finally, it allows you to pinpoint
conditions when manual failover was triggered either advertently or by
human error.

SQLDIAG files

The WSFC, as noted, uses a sp_server_diagnostics stored procedure as
part of IsHealthy cluster checks. This stored procedure provides
information about SQL Server component health and resource
utilization, such as memory and CPU usage, the state of the deadlock
monitor, access violations and thread dumps, and many others. It also
provides general health information on all Availability Groups on the
server.

The data from sp_server_diagnostics is captured by a hidden xEvent
session and stored in XEL files in the SQL Server Log folder. These files
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are extremely useful during failover troubleshooting, because they can
tell you if some of the server components were overloaded or not
healthy. The naming convention for the files consists of the server and
instance name followed by an SQLDIAG string.

system_health xEvent Session

The system_health xEvent session is another session that is created and
runs by default in SQL Server. It provides information about general
SQL Server health and high-severity errors along with component health
and diagnostics data. The latter is similar to the information in the
SQLDIAG files; however, the metrics are aggregated in larger intervals
of 5 minutes.

Cluster Log

The cluster log is a key source of data for the troubleshooting. It contains
detailed information about the errors that led to failover conditions and
can help you pinpoint quorum and other cluster-related issues.

SQL Server Log

The SQL Server log provides information about critical errors, the status
of failovers, and the state of Availability Group replicas. Looking at the
events around the time of incident can be useful when troubleshooting.

System Logs

System logs and the Windows Event Log can provide details about
critical system conditions and errors, such as hardware failures.

Keep in mind that SQL Server and Windows Failover Cluster roll the logs
and xEvent files over. You need to collect the data shortly after failover
occurs, or it may disappear. When you have collected the data, analyze it
holistically to identify the problem.

When Failover Does Not Occur
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In some cases, you need to troubleshoot the opposite problem: why
Availability Group did not failover automatically when it should have. Here
are a few common reasons this happens.

Incorrect Configuration

The Availability Group has not been configured correctly: for example, it
does not have Automatic Failover set or it has databases that joined
Availability Group on a single node only.

Communication Issues

Failover may not occur if primary node loses connectivity to the
secondary node to which it is supposed to failover. Failover also requires
the databases to be fully synchronized, so it might not happen if the
secondary has not caught up with replication after being offline.

Cluster Issues

Some WSFC issues may prevent automatic failover, such as the SQL
Server resource DLL losing its connection to SQL Server.

Availability Group Exceeded Maximum Failover Threshold

Each cluster resource has a set of properties that specify the maximum
number of failovers that can occur within a specific time period. In
Availability Groups, the default maximum number of failovers is N – 1,
where N is the number of nodes in the cluster. The default time period is
6 hours.

You can change these values in the properties of Availability Group
cluster resource.

The troubleshooting approach is very similar to what you did to identify an
unwanted failover: look at the data from the Cluster and SQL Server logs,
SQLDIAG files, AlwaysOn_health sessions, and system_health sessions and
reconstruct what happened during the incident. This usually provides enough
data to help you understand the cause of the problem.
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Summary
AlwaysOn Availability Groups is the most popular High Availability
technology used in SQL Server. It avoids a situation where storage can be
the single point of failure and, in Enterprise Edition, allows you to scale read
workload across multiple replicas.

Availability Groups do not replicate instance-level objects, such as logins
and jobs. Synchronize them across the nodes to allow systems to operate
after failovers.

Replication in Availability Groups is based on the stream of transaction log
records. Monitor send and redo queues and set alerts to notify you when they
grow. Large queues may lead to data loss and prolong recovery time. They
can also prevent log truncation and introduce other performance issues.

Synchronous commit mode helps avoid data loss, but the tradeoff is
additional commit latency during replication. Analyze the
HADR_SYNC_COMMIT wait time and reduce it as much as possible.

Readable secondaries allow you to scale read workload. However, they may
defer ghost and version store cleanup tasks on the primary node, increasing
CPU and I/O load there. Avoid long-running transactions on secondaries and
monitor workload there.

When you troubleshoot failover events, look at the data from
AlwaysOn_health and system_health xEvent sessions; SQLDIAG files; and
OS, SQL Server, and Cluster logs. They usually contain enough information
to diagnose the problem.

In the next chapter, I’ll discuss several other common wait types.

Troubleshooting Checklist
Make sure that instance-level objects are synchronized across Availability
Group nodes

Perform failover/HA testing if possible
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Set up Availability Group monitoring and alerting to cover queue sizes,
replication latency, ghost cleanup lag, and failover events

Analyze the impact of commit latency if synchronous commit is used;
review the HADR_SYNC_COMMIT resource wait time and troubleshoot
replication performance if needed

Check if readable secondaries are enabled. Evaluate the impact of read-only
queries on synchronous readable replicas.

Disable readable secondaries if they are not being used.
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Chapter 12. Other Notable Wait
Types

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 13th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at dmitri@aboutsqlserver.com.

This rather small chapter covers several wait types I have not discussed yet.
I will start with the ASYNC_NETWORK_IO wait, which occurs when the
client does not consume data from SQL Server fast enough. Next, I will talk
about the THREADPOOL wait and the dangerous condition of worker
thread starvation. After that, I will address backup-related wait types and
ways to improve backup performance.

I will conclude the chapter with an overview of OLEDB and a few other
preemptive wait types that occur when SQL Server calls OS API switching
to preemptive execution mode.

ASYNC_NETWORK_IO Waits
The ASYNC_NETWORK_IO is a common wait I see in nearly every
system. Inexperienced engineers usually guess by the wait type name,
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associating ASYNC_NETWORK_IO with bad network performance. This
wait, however, indicates a much broader condition that occurs when SQL
Server has to wait for the client application to consume data.

Slow networks can definitely trigger that condition, but more often than not,
the cause is inefficient client application design. If the application reads and
processes data row by row, this forces SQL Server to wait during
processing.

Listing 13-1 shows the code pattern that will trigger the issue. The client
application consumes and processes rows one by one, keeping
SqlDataReader open. The SQL Server worker waits for the client to
consume all rows and generates the ASYNC_NETWORK_IO wait in the
meantime.

Example 12-1. Listing 13-1. Code pattern that triggers
ASYNC_NETWORK_IO wait
using (SqlConnection connection = new 
SqlConnection(connectionString)) 
{ 
    SqlCommand command = new SqlCommand(cmdText, connection); 
    connection.Open(); 
    using (SqlDataReader reader = command.ExecuteReader()) 
    { 
        while (reader.Read()) 
            ProcessRow((IDataRecord)reader); 
    } 
}

The right approach here is to read all rows first as quickly as possible, then
process them afterward, as shown in Listing 13-2. The client may need to
batch the operation, if the size of the data is very large and the clients do not
have enough memory to cache it.

Example 12-2. Listing 13-2. Code pattern that removes
ASYNC_NETWORK_IO waits
List<Orders> orderRows = new List<Orders>(); 
using (SqlConnection connection = new 
SqlConnection(connectionString)) 
{ 
    SqlCommand command = new SqlCommand(cmdText, connection); 
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    connection.Open(); 
    using (SqlDataReader reader = command.ExecuteReader()) 
    { 
        while (reader.Read()) 
            orderRows.Add(ReadOrderRow((IDataRecord)reader)); 
    } 
}  
ProcessAllOrderRows(orderRows);

My favorite way to prove that row-by-row processing triggers an
ASYNC_NETWORK_IO wait is running a small demo in SSMS. Connect
to the local SQL Server instance—SSMS will use the shared memory
protocol, which does not involve any network traffic. Next, clear the wait
statistics and run the SELECT * statement from the table, selecting several
thousand rows. When you check the waits after the execution, you’ll see
ASYNC_NETWORK_IO at the top of the list despite the total absence of
network traffic.

Next, enable the Discard results after execution setting in the
Tools/Options/Query Results/SQL Server/Results to Grid options form and
repeat the test. You’ll see that the ASYNC_NETWORK_IO wait is no
longer present. The reason you saw the wait in the first test is SSMS
inefficiency, which populates the results grid on a row-by-row basis. This
implementation is slow, and SQL Server waits for each row to be displayed
in the grid, generating the wait.

When this wait is present in significant amounts, analyze network
performance first. Review network topology (remember, network
throughput depends on the slowest component) and check network-
performance counters and metrics.

When you are confident that network performance is not an issue, analyze
the situation with client applications. You might detect inefficient code with
the sys.dm_os_waiting_tasks, sys.dm_exec_requests,
sys.dm_exec_sessions, and sys.dm_exec_connections views. However, in
some cases, it may not be feasible or even possible to change the client
code.

www.datasense.ir



In my list, the ASYNC_NETWORK_IO waits belong to the “it depends”
category. I sometimes ignore them if they are not very significant and the
system is not operating under an extremely heavy load.

Don’t take this the wrong way, though: this wait is not benign. It consumes
workers on the server and introduces memory and CPU overhead.
Nevertheless, it is not the biggest fish to fry. I usually get better ROI by
focusing on other areas.

THREADPOOL Waits
In contrast to ASYNC_NETWORK_IO waits, THREADPOOL waits need
to be investigated even when you see only a few. They indicate that SQL
Server does not have enough worker threads to assign to tasks. When this
happens, clients are unable to connect to SQL Server and will get
connection timeout errors, as if SQL Server was down.

One situation where this may happen is when you have long blocking
chains, usually with schema modification (Sch-M) locks involved. Follow
along with me as we go through an example that emulates this condition.

First, let’s reduce the number of workers on the server by running the code
from Listing 13-3. This code also enables a remote dedicated admin
connection (DAC) – more about that later.

WARNING
Do not execute this scenario on production servers. It will bring the server down! Also,
reset the max worker threads value back to 0 after the test is complete.

Example 12-3. Listing 13-3. Enabling a remote dedicated admin connection
and reducing the number of workers
EXEC sys.sp_configure N'max worker threads', N'128'; 
GO 
EXEC sp_configure 'remote admin connections', 1; 
GO 
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RECONFIGURE 
GO

Next, let’s create a small table and insert a row into it acquiring an intent-
exclusive (IX) lock there. Run the code in Listing 13-4; do not commit the
transaction and do not close the session afterwards.

Example 12-4. Listing 13-4. THREADPOOL wait: Creating a test table and
acquiring an intent-exclusive lock
CREATE TABLE dbo.ThreadPoolDemo 
( 
    Col1 INT 
); 
GO 
BEGIN TRAN 
    INSERT INTO dbo.ThreadPoolDemo VALUES(0);

Next, let’s open another session and run the ALTER TABLE statement
shown in Listing 13-5. This statement will be blocked because Sch-M and
IX locks are incompatible.

Example 12-5. Listing 13-5. THREADPOOL wait: Altering the table
-- Run in the different session from Listing 13-4 
ALTER TABLE dbo.ThreadPoolDemo ADD Col2 INT;

Now, any other sessions trying to access the table will be blocked due to the
presence of the Sch-M lock request in the queue. They will be suspended
and wait, consuming workers on the server.

Let’s emulate this condition by running the Windows Batch script shown in
Listing 13-6. This script will open multiple sessions that try to select data
from the table. You may need to change the server and database names in
your environment.

Example 12-6. Listing 13-6. THREADPOOL wait: Generating multiple
sessions and blocking
@ECHO OFF 
SET query="SELECT * FROM SQLServerInternals.dbo.T" 
SET p1=-S 
SET server=. 
SET p3=-E 
SET p4=-Q 
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FOR /L %%I IN (1,1,150) DO ( 
    START "" "sqlcmd.exe" %p1% %server% %p3% %p4% %query% 
)

This will consume all available workers. Now, if you try to connect to the
server from SSMS, you’ll get the connection error shown in Figure 13-1
because there are no available workers in the system to pick up the
connection.

Figure 12-1. Connection error when worker pool is exhausted

When this condition occurs (and in other cases when the server stops
responding), you can connect to it through a dedicated admin connection.
SQL Server reserves a private scheduler and a small amount of memory for
DAC to support those troubleshooting scenarios.

You can connect to SQL Server with DAC by using the ADMIN: server
name prefix in the SSMS connection box or with the -A option in sqlcmd
utility. Only members of the sysadmin server role are allowed to connect,
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and only one session at a time can use a DAC connection. Do not connect
to DAC in SSMS Object Explorer, which requires its own connection.
Similarly, disable the Intellisense feature in the Query Window before
connecting.

By default, DAC is available only locally. In some cases, when a server is
completely overloaded, OS may not respond, preventing you from utilizing
it. You always need to enable remote access to DAC during the initial
server setup, as I did in Listing 13-3.

Now, connect to the server through DAC and query the
sys.dm_os_waiting_tasks view with the code shown in Listing 13-7. Note
that I filtered out system sessions from the output to focus on the blocking
chain and THREADPOOL waits. I would not do that if I were
troubleshooting an ongoing issue.

Example 12-7. Listing 13-6. THREADPOOL wait: Querying
sys.dm_os_waiting_tasks view
SELECT  
    session_id 
    ,wait_type 
    ,wait_duration_ms 
    ,blocking_session_id 
    ,resource_description 
FROM  
    sys.dm_os_waiting_tasks WITH (NOLOCK) 
WHERE  
    (session_id > 50 OR session_id IS NULL) AND  
    wait_type NOT IN (N'CLR_AUTO_EVENT',N'QDS_ASYNC_QUEUE' 
        ,N'XTP_PREEMPTIVE_TASK',N'BROKER_RECEIVE_WAITFOR' 
        ,N'QDS_PERSIST_TASK_MAIN_LOOP_SLEEP') 
ORDER BY   
    session_id, 
    wait_duration_ms DESC;

Figure 13-2 shows the output of the code. You can see the large number of
sessions waiting for a schema stability lock on the table, generating a
LCK_M_SCH_S wait type. They are blocked by the session with an
ALTER TABLE statement, due to incompatibility between the Sch-S and
Sch-M locks. The ALTER TABLE, in turn, is blocked by the session with
SPID=55 that executed an INSERT statement in the uncommitted
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transaction. You can terminate either the root blocker or the ALTER
TABLE session with the KILL command to solve the problem.

Figure 12-2. Output of sys.dm_os_waiting_tasks view

As you may have noticed, the root-blocker session with SPID=55 is not
present in the output. That session has the runaway uncommitted
transaction and had not been blocked in our example. You can see it in
sleeping status with open_transaction_count=1 in the sys.dm_exec_sessions
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view output. You can use Listing 2-3 to obtain information about the
session and client application for further troubleshooting.

You can also see the tasks with THREADPOOL waits in the
sys.dm_os_waiting_tasks view output. Those tasks belong to connection
requests from the clients. SQL Server does not have available workers to
handle them, which will eventually trigger connection errors on the client
side.

It is also worth noting that those tasks have empty session_id values, as the
sessions have not been established yet. Thus, they would not appear in the
sys.dm_exec_requests view output.

There are other cases that may lead to THREADPOOL waits. For example,
they may occur in low memory conditions, due to inadequately provisioned
servers or memory pressure. The number of workers in the system depends
on the amount of memory and other factors; you may have insufficient
workers to handle the load. Look at the error log for signs of memory
pressure and SQL Server dumps.

It is also possible that server cannot handle the workload because there are
too many active sessions or too many concurrent queries with the parallel
plans. You need to troubleshoot those conditions and potentially tune the
system to reduce the overall load.

Check the max worker thread setting. It is sometimes misconfigured and set
to a low number. Reset it to the default value and see how that impacts the
system.

You can consider increasing the max worker thread setting; however, this
rarely addresses the problem. For example, massive blocking may quickly
reappear, with the new workers also blocked. Don’t panic! Just troubleshoot
the root cause of the issue – that’s always the better option.

Backup-Related Waits
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As you can guess by their names, BACKUPIO and BACKUPBUFFER
waits occur during backup and restore. They indicate insufficient operations
throughput when SQL Server cannot write to or read from backup files fast
enough. I rarely focus on those waits in the beginning of the performance
tuning process; however, there are a couple of things worth analyzing if you
see those waits in noticeable amounts.

It is common to see backup, I/O, and network-related waits together when
they share the same resources. For example, a slow or overloaded disk
subsystem may lead to BACKUPIO, PAGEIOLATCH, WRITELOG and
other I/O-related waits. Backup-related waits, in such cases, may become
another element confirming the problem.

However, when resources are shared, check if the backup operation impacts
other components when it is running. For example, is there an increase in
the number of occurrences and average wait times of PAGEIOLATCH,
WRITELOG or HADR_SYNC_COMMIT waits during that time?

Many monitoring tools collect information about waits that occur in
specific time intervals, and you can use this in your analysis. Alternatively,
you can build a solution by persisting sys.dm_os_wait_stats data in utility
database at regular intervals, perhaps using SQL Server Agent Job. The
companion materials for this book include a script that provides a snapshot
of the wait statistics for the time interval, which you can use to build your
implementation.

In the end, redesign the backup process if you see an impact. Utilize
differential backups, use different targets to store files, and adjust the
schedule. Your strategy and options will depend on the infrastructure, your
RTO and RPO requirements, version and edition of SQL Server, and other
factors.

Improving Backup Performance
The native SQL Server backup does not provide a lot of configuration
options. Nevertheless, there are some knobs you can turn to tune and
improve backup performance. Let’s look at them.
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Backup Compression
SQL Server allows you to compress backup files. In most cases, it reduces
the size of the backup files, at the cost of extra CPU load introduced by the
compression.

Usually, this is a good trade-off. Smaller backup files will take less time to
transmit over the network, which improves recovery time in the event of
disaster. They also reduce the load and storage size on the disk subsystem.

As a general rule, unless the server is CPU-bound, enable backup
compression. There are a few considerations related to Transparent Data
Encryption (TDE), which I will cover shortly.

Striped Backups
You can split the database backup into multiple files and create a striped
backup. This will parallelize backup and restore operations, allowing SQL
Server to use multiple threads to perform them.

This feature is very beneficial for large databases and may significantly
reduce backup and restore times. Keep in mind that it is resource intensive
and will add load to the infrastructure.

You also need to analyze bottlenecks during the backup process. For
example, if you are backing up the database to a network location and don’t
have sufficient network throughput, striping the backups and parallelizing
the process won’t help you much. In that case, you might consider striping
backups to local DAS storage and copying the files to network location
later, when the backup is complete.

BUFFERCOUNT and MAXTRANSFERSIZE Options
SQL Server allows you to control the number of I/O buffers
(BUFFERCOUNT option) and the maximum size of transfer block
(MAXTRANSFERSIZE option) for your backup operation. Usually,
increasing both speeds up the process. You need to carefully tune them in
your system, though. After a speed increase, the backup operation will
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consume more memory, which may impact other SQL Server components.
It may even lead to an out of memory condition if you the set parameters
incorrectly.

If you want to compress a TDE-enabled database in SQL Server 2016 or
2017, set MAXTRANSFERSIZE larger than 65,536 (64KB). This will
switch SQL Server to the new and improved compression algorithm, which
works with encryption. Without that, compressing an encrypted database
would not save much space. This is not required in SQL Server 2019, which
will adjust MAXTRANSFERSIZE automatically while it compresses the
TDE-enabled database.

Partial Database Backups
When you deal with large databases, it is very common for a large portion
of the data to become static over time: think of scenarios with append-only
tables or when the data becomes read-only after some time.

When this is the case, you can partition the data, utilizing partitioned tables
and/or views. You can place the static portion of the data into separate
filegroups, marking them as read-only. Those filegroups can be backed up
just once and then excluded from the regular FULL backups, saving time
and significantly reducing the backup’s size on disk. (You can read about
this implementation in more detail on my blog or in my book Pro SQL
Server Internals.)

In the end, the way you tune backup and restore processes should be
aligned with your organization’s disaster-recovery strategy. Review the
requirements and the RTO and RPO metrics and design an implementation
that can support them.

HTBUILD and Other HT* Waits
The HTBUILD, HTDELETE, HTMEMO, HTREINIT, and
HTREPARTITION waits occur during management of internal hash tables
in batch-mode execution. Prior to SQL Server 2019, batch-mode execution
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was almost exclusively used with columnstore indexes. In SQL Server 2019
and above, it can also be used with row-based tables.

Having those waits present in small amounts does not necessarily indicate a
problem. They may, however, be a sign of poorly maintained columnstore
indexes. In particular, they sometimes indicate the presence of large
uncompressed delta stores or of many small and unevenly-sized rowgroups.
Review the columnstore indexes and rebuild any partitions that have
inefficiencies. You can use the sys.column_store_row_group view for the
analysis.

I have yet to see those waits become an issue with batch-mode execution on
row-based tables in SQL Server 2019. I’d guess, however, that inaccurate
statistics may introduce them.

Finally, I’d like to note that Microsoft Documentation suggests reducing
MAXDOP or increasing the cost threshold for parallelism as ways to
mitigate these waits. This is not the right approach, in my opinion: it will
mask the problem and disable batch-mode execution for some queries,
degrading performance.

Preemptive Waits
As you remember from Chapter 2, SQL Server OS uses a cooperative
execution model. The workers voluntarily yield when their CPU time
quantum expires, allowing other workers to execute.

There are some exceptions, however, when SQL Server needs to call
external functions it does not control. Think about OS API calls to
authenticate the user against a domain controller or extended stored
procedures calls. When it happens, SQL Server switches the worker to
preemptive execution mode. SQL Server does not control its scheduling
anymore. The worker continues to show the RUNNING state; however, it
also generates a wait of one of the preemptive types, of which there are
more than 200 in SQL Server 2019. Most of them do not represent any
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contention and can be ignored. There are a few, however, you need to be
aware of. Let’s look at them.

PREEMPTIVE_OS_WRITEFILEGATHER Wait Type
PREEMPTIVE_OS_WRITEFILEGATHER waits occur during the zero-
initializing process. As you’ll recall, SQL Server always zero-initializes log
files and may also zero-initialize data files if instant file initialization is not
enabled.

When you see that wait in the system, check and enable instant file
initialization by granting Perform volume management tasks
(SE_MANAGE_VOLUME_NAME) permission to the SQL Server startup
account. Remember that there is a small security risk (discussed in Chapter
1), although it is usually not an issue in most systems.

Also, review the transaction log’s auto-growth parameters. Growing the log
files in large chunks can prolong zero-initializing time and lead to
inefficient VLF structure. As you learned in Chapter 11, it is better to
manage transaction-log size manually.

PREEMPTIVE_OS_WRITEFILE Wait Type
PREEMPTIVE_OS_WRITEFILE waits may indicate a bottleneck during
synchronous writes to the files. This wait type rarely becomes the issue;
however, it may be a sign of a slow or overloaded disk subsystem on the
server.

When I see this wait type present in significant amounts, I check whether
the server runs multiple SQL Traces using files as the targets to save data.
Another occurrence of this wait may be related to database-snapshot writes
– either snapshots created by users or to internal snapshots created by the
DBCC CHECKDB operation.

Authentication-Related Wait Types
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There are several wait types that occur during user authentication calls
when SQL Server needs to wait for responses from the Domain Controller.
Their names start with PREEMPTIVE_OS_AUTH*; and they also include
PREEMPTIVE_OS_LOOKUPACCOUNTSID and
PREEMPTIVE_OS_ACCEPTSECURITYCONTEXT waits.

These waits may be infrastructure-related. One typical example involves
Cloud-based SQL Servers authenticating against remote on-premises Active
Directory controllers. The latency of the calls can prolong the
authentication process, leading to a high percentage of authentication-
related waits.

Another possible reason is code that runs under a different execution
context than the calling session. The EXECUTE AS OWNER or
EXECUTE AS USER modules may require constant authentication calls,
which can be expensive under a heavy load.

When you see authentication-related waits in the system, check the health
of the AD infrastructure and the latency of authentication calls, then review
how often those calls have been performed.

OLEDB Waits
OLEDB is another preemptive wait type that occurs when SQL Server is
waiting for data from an OLE DB provider. Most often it happens in the
following cases:

Calls to linked servers

Execution of some SSIS packages

Operations during DBCC CHECKDB execution

Queries against DMVs

Waits from the first two categories usually have relatively high wait times.
Such cases indicate long-running remote queries and prolonged SSIS
package execution. Consider troubleshooting the performance of those calls
on remote servers and/or reviewing the SSIS package logic.
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Waits from DBCC CHECKDB operation and from DMV access are usually
short, no more than a few milliseconds on average. The cumulative
numbers will give you an idea of the overhead of the operations. You can
address the DBCC CHECKDB overhead by offloading it to the secondary
Availability Group replicas or to a backup validation server.

DMV access waits can give you an idea of the overhead of the monitoring
tools that are constantly querying those views. If they produce excessive
waits, you might to decide to redesign your monitoring strategy and/or
switch to different tools.

Finally, another known issue for OLEDB waits sometimes occurs when a
remote non-SQL Server linked server does not terminate the connection
properly. SQL Server will keep connection open, generating a never-ending
OLEDB wait for the session. Unfortunately, there is no easy way to fix this
besides restarting SQL Server.

Wait Types: Wrapping Up
There are hundreds of wait types in SQL Server and it is impossible to
cover all of them. Nor is it practical – in all likelihood, you’ll never deal
with most of them during system troubleshooting.

This book has so far covered the most common wait types, enough to
troubleshoot most issues; however, you may encounter other wait types.
Don’t be confused when it happens!

Start by researching the wait type. The Microsoft documentation is a good
place to start. Another useful resource is the SQLSkills Wait Types Library.
Obviously, use Google or Bing as well – sometimes you’ll find useful
information there.

The conditions when the wait type is generated will point you to the
problematic areas. By now, you know enough about SQL Server’s
execution model and components to define your troubleshooting strategy
and address issues. Just remember to look at the problem holistically and
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avoid tunnel vision. All of SQL Server’s components work together, and
issues that arise can impact many of them.

Summary
ASYNC_NETWORK_IO waits occur when SQL Server has to wait for a
client application to consume the data. It may indicate inefficient network
throughput or issues with client applications that read and process data row
by row.

The presence of THREADPOOL waits indicates the dangerous condition of
worker thread starvation. When this happens, SQL Server does not have
enough workers to execute client requests and becomes unresponsive.
Typical issues that trigger that condition include long blocking chains,
insufficient memory (due to incorrect configuration or extreme memory
pressure, and heavy concurrent (and often non-optimized) load.

You can use dedicated admin connection to troubleshoot ongoing issues
when SQL Server is unresponsive and does not accept regular connections.
Make sure to enable remote access to DAC during server provisioning.

BACKUPIO and BACKUPBUFFER waits occur if SQL Server does not
have enough throughput to write to or read from backup files. Analyze the
infrastructure and tune the backup process when you see them.

Preemptive waits occur when SQL Server needs to call external functions
by switching to a preemptive execution model. You can ignore most of
those waits; however, pay attention to authentication-related waits, OLEDB
waits, and I/O-related preemptive wait types.

In the next chapter we’ll switch gears, discussing how to detect
inefficiencies in the database schema and indexing.

Troubleshooting Checklist
Review the network topology and client implementation when you see large
amount of ASYNC_NETWORK_IO waits.
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Investigate THREADPOOL waits if you see them.

Review Disaster Recovery and Backup Strategies and tune backup process
if needed.

Analyze the size of delta stores and state of rowgroups in columnstore
indexes if you see HTBUILD or other batch-mode execution-related waits.

Troubleshoot preemptive and OLEDB waits if you see a noticeable number
of them.
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Chapter 13. Database Schema
and Index Analysis

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 13th chapter of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at dmitri@aboutsqlserver.com.

Until this point, most of the troubleshooting efforts described in this book have
treated users’ databases and applications as black boxes. I’ve focused on
performance improvements that do not require any changes in the databases
and applications beyond indexing and simple T-SQL code changes. This
approach provides easier and faster ROI; however, it also limits the results you
can accomplish.

Don’t take this the wrong way: in many cases, you can achieve good enough
results without needing to make significant database and application changes.
Nevertheless, it may be beneficial to perform a high-level review of your
database schema and index usage and address some of the problems you find.

I’ll start this chapter with an overview of several SQL Server catalog views
and show you how to detect a few database-design issues. Next, I’ll
demonstrate how to identify inefficient indexing through index usage and
operational statistics and provide a handful of scripts for this analysis,
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including one that lets you view various index metrics consolidated together at
a glance.

Database Schema Analysis
SQL Server provides quite a few catalog views that expose information about
server- and database-level objects. They are extremely useful when you need
to analyze and detect inefficiencies in the database schema.

Figure 14-1 shows several database-object-related catalog views with their
dependencies and key attributes. This is just a small subset of the available
views, to give you an idea of how much information you can obtain.

Figure 13-1. Catalog views

Let’s look at seven common design issues you can identify with catalog views:

Heap tables

Indexes on uniqueidentifier columns
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Wide and nonunique clustered indexes

Untrusted foreign keys

Non-indexed foreign keys

Redundant indexes

High identity values

Heap Tables
Heap tables are a somewhat controversial subject. They certainly have their
uses – for example, they may be a good choice in some ETL processes where
fast insert throughput is critical and you cannot use memory-optimized tables.
However, as I briefly mentioned in Chapter 5, it is better to avoid heap tables;
tables with clustered indexes outperform them in most workloads.

When I see heap tables during my analysis, I usually review them and consider
creating clustered indexes on them. If that’s impossible, I look for inefficient
heap tables and rebuild them.

The code in Listing 14-1 provides a list of heap tables in the database. You
may want to review index usage statistics in those tables to see if there is a
natural candidate for a clustered index. (I’ll talk more about this later in the
chapter.)

Example 13-1. Listing 14-1. Obtaining heap tables in the database
SELECT  
    t.object_id 
    ,s.name + '.' + t.name AS [table] 
    ,p.rows 
FROM  
    sys.tables t WITH (NOLOCK)  
        JOIN sys.schemas s WITH (NOLOCK) ON 
            t.schema_id = s.schema_id 
        CROSS APPLY 
         ( 
            SELECT SUM(p.rows) AS [rows] 
            FROM sys.partitions p WITH (NOLOCK)  
            WHERE t.object_id = p.object_id AND p.index_id = 0 
        ) p 
WHERE 
    t.is_memory_optimized = 0 AND 
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    t.is_ms_shipped = 0 AND 
    EXISTS  
     ( 
        SELECT * 
        FROM sys.indexes i WITH (NOLOCK) 
        WHERE t.object_id = i.object_id AND i.index_id = 0 
    ) 
ORDER BY 
    p.rows DESC 
OPTION (RECOMPILE, MAXDOP 1);

There are two main metrics to monitor with heap tables. The first is the
number of forwarded records. In contrast to B-Tree indexes, when a heap table
page does not have enough space to accommodate the new version of a row,
SQL Server does not perform a page split. Instead, it puts the new row on
another page and replaces the original row with a small structure called a
forwarding pointer. Large numbers of forwarding pointers and forwarded
records will reduce the performance of I/O operations on the table.

The second metric is internal fragmentation, which is the amount of free space
available on the data pages. A large degree of internal fragmentation will
increase the size of the table on disk and in memory, which decreases
performance.

Listing 14-2 shows how to detect inefficient heap tables. The code uses the
expensive sys.dm_db_index_plysical_stats function, which scans the entire
table, so it’s better to run it in a non-production environment—for example,
against a recent database backup restored on a non-production server.

You can rebuild inefficient heap tables with the ALTER TABLE REBUILD
statement after you detect them.

Example 13-2. Listing 14-2. Detecting inefficient heap tables
SELECT TOP 25 
    t.object_id 
    ,s.name + '.' + t.name AS [table] 
    ,SUM(ips.record_count) AS [rows] 
    ,SUM(ips.forwarded_record_count)  
            AS [forwarding pointers] 
    ,SUM(ips.avg_page_space_used_in_percent * ips.page_count) /  
        NULLIF(SUM(ips.page_count),0)  
            AS [internal fragmentation %] 
FROM  
    sys.tables t WITH (NOLOCK)  
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        JOIN sys.schemas s WITH (NOLOCK) ON 
            t.schema_id = s.schema_id 
        CROSS APPLY 
            sys.dm_db_index_physical_stats 
                (DB_ID(),t.object_id,0,NULL,'DETAILED') ips 
WHERE 
    t.is_memory_optimized = 0 AND 
    t.is_ms_shipped = 0 AND 
    EXISTS  
    ( 
        SELECT * 
        FROM sys.indexes i WITH (NOLOCK) 
        WHERE t.object_id = i.object_id AND i.index_id = 0 
    ) 
GROUP BY 
    t.object_id, s.name, t.name 
ORDER BY 
     [forwarding pointers] DESC  
OPTION (RECOMPILE, MAXDOP 1);

Indexes with the Uniqueidentifier Data Type
B-Tree indexes that use randomly generated values for keys often cause
performance problems. Random values introduce very significant index
fragmentation, and they are slow during large batch operations.

One of the most common approaches to generating random values is using the
uniqueidentifier data type. The code in Listing 14-3 detects indexes that have
uniqueidentifier as the leftmost key column in the index. When you detect this,
you can also look at index fragmentation with the
sys.dm_db_index_plysical_stats view.

Example 13-3. Listing 14-3. Getting indexes with uniqueidentifiers in the
leftmost key column
SELECT 
    t.object_id 
    ,s.name + '.' + t.name AS [table] 
    ,i.name AS [index] 
    ,i.is_disabled 
    ,p.rows 
FROM  
    sys.tables t WITH (NOLOCK)  
        JOIN sys.schemas s WITH (NOLOCK) ON 
            t.schema_id = s.schema_id 
        JOIN sys.indexes i WITH (NOLOCK) ON 
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            t.object_id = i.object_id 
        CROSS APPLY 
        ( 
            SELECT SUM(p.rows) AS [rows] 
            FROM sys.partitions p WITH (NOLOCK)  
            WHERE i.object_id = p.object_id AND i.index_id = 
p.index_id 
        ) p 
WHERE 
    t.is_memory_optimized = 0 AND 
    i.type in (1,2) AND /* CI and NCI */ 
    i.is_hypothetical = 0 AND 
    EXISTS  
    ( 
        SELECT * 
        FROM  
            sys.index_columns ic WITH (NOLOCK) 
                JOIN sys.columns c WITH (NOLOCK) ON 
                    ic.object_id = c.object_id AND 
                    ic.column_id = c.column_id 
        WHERE  
            ic.object_id = i.object_id AND 
            ic.index_id = i.index_id AND 
            ic.key_ordinal = 1 AND 
            c.system_type_id = 36 /* uniqueidentifier */ 
    ) 
ORDER BY 
    p.[rows] DESC 
OPTION (RECOMPILE, MAXDOP 1);

You’ll need to analyze how new uniqueidentifier values are generated.
Random values generated in the application or with the NEWID() function
will lead to problems; however, the NEWSEQUENTIALID() function
introduces pseudo-ever-increasing values that behave similarly to identity
columns (except less efficient, due to their larger data type size). Keep in mind
that the NEWSEQUENTIALID() function may generate values lower than it
previously generated after OS restart or failover.

Unfortunately, there is no simple way to address the problems introduced by
indexed random keys. I recommend that you analyze the amount of
fragmentation, tune the FILLFACTOR index property to minimize page splits,
and consider code refactoring when it is an option.

Wide and Non-Unique Clustered Indexes
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For good system performance, you need efficient clustered indexes. In
addition to supporting critical queries, the ideal clustered index has three
characteristics: it should be static, narrow, and unique.

Static

First, an ideal clustered index should be static. The goal is generally to
avoid updating clustered keys, a very expensive operation that requires
moving data rows to another place in the clustered index B-Tree and then
updating row-ids in all nonclustered index rows that reference the data
row.

Narrow

Second, an ideal clustered index should be narrow. Because clustered
index key columns present as row-id in all nonclustered indexes, wide
clustered index keys lead to wide and therefore less efficient nonclustered
indexes.

Unique

Finally, an ideal clustered index should be defined as unique. When you
don’t define this, SQL Server adds another 4-byte internal column called
uniquefier (not to be confused with uniqueidentifier!) that enforces the
uniqueness of the clustered index keys. This column increases the size of
clustered and nonclustered index keys and should be avoided when
possible.

Listing 14-4 shows two queries. The first provides the 25 tables with the
widest clustered index keys, based on key column data types. The second
produces a list of tables with non-unique clustered indexes.

Example 13-4. Listing 14-4. Detecting inefficient clustered indexes
SELECT TOP 25 
    t.object_id 
    ,s.name + '.' + t.name AS [table] 
    ,p.rows 
    ,ic.[max length] 
FROM  
    sys.tables t WITH (NOLOCK)  
        JOIN sys.schemas s WITH (NOLOCK) ON 
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            t.schema_id = s.schema_id 
        CROSS APPLY 
        ( 
            SELECT SUM(p.rows) AS [rows] 
            FROM sys.partitions p WITH (NOLOCK)  
            WHERE i.object_id = p.object_id AND p.index_id = 1 
        ) p 
        CROSS APPLY 
        ( 
            SELECT SUM(c.max_length) as [max length] 
            FROM  
                sys.indexes i   
                    JOIN sys.index_columns ic WITH (NOLOCK) ON 
                        i.object_id = ic.object_id AND 
                        i.index_id = ic.index_id AND 
                        ic.is_included_column = 0 
                    JOIN sys.columns c WITH (NOLOCK) ON 
                        ic.object_id = c.object_id AND 
                        ic.column_id = c.column_id 
            WHERE  
                i.object_id = t.object_id AND 
                i.index_id = 1 AND 
                i.type = 1 
        ) ic 
WHERE 
    t.is_memory_optimized = 0  
ORDER BY 
    ic.[max length] DESC 
OPTION (RECOMPILE, MAXDOP 1); 
-- Non-unique CI 
SELECT  
    t.object_id 
    ,s.name + '.' + t.name AS [table] 
    ,p.rows 
FROM  
    sys.tables t WITH (NOLOCK)  
        JOIN sys.schemas s WITH (NOLOCK) ON 
            t.schema_id = s.schema_id 
        CROSS APPLY 
        ( 
            SELECT SUM(p.rows) AS [rows] 
            FROM sys.partitions p WITH (NOLOCK)  
            WHERE t.object_id = p.object_id AND p.index_id = 1 
        ) p 
WHERE 
    t.is_memory_optimized = 0 AND 
    EXISTS  
    ( 
        SELECT * 
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        FROM sys.indexes i WITH (NOLOCK) 
        WHERE  
            t.object_id = i.object_id AND 
            i.index_id = 1 AND 
            i.is_unique = 0 AND 
            i.type = 1 /* CI */ 
    ) 
ORDER BY 
    p.[rows] DESC 
OPTION (RECOMPILE, MAXDOP 1);

Do not jump to conclusions based strictly on query outputs. The benefits of
having the right clustered indexes to support critical queries may easily offset
the overhead introduced by wide and non-unique indexes. Look at the queries
and indexing holistically before making the decision to refactor database
schema.

Nevertheless, it is always better to recreate clustered indexes as unique if data
in the index key is unique. The overhead of a uniquefier column is completely
unnecessary.

Untrusted Foreign Keys
Aside from a very few edge cases, it’s always good to define foreign key
constraints in the database. They improve data quality and reduce errors and
bugs. Moreover, they often improve performance—for example, Query
Optimizer can remove unnecessary joins between tables with foreign keys
present.

There are two ways to create foreign key constraints. By default, they are
created as trusted with SQL Server validating that existing data in the tables
do not violate the constraint. You can also create the constraint as untrusted
using WITH NOCHECK clause in ALTER TABLE statement. In that case,
SQL Server enforces constraint going forward; however, it does not validate
existing data.

Unfortunately, untrusted foreign key constraints limit possible optimizations
for Query Optimizer, and it is better to validate untrusted foreign keys. Listing
14-5 allows you to detect untrusted constraints in the database.

Example 13-5. Listing 14-5. Selecting untrusted foreign key constraints
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SELECT 
    fk.is_disabled 
    ,fk.is_not_trusted 
    ,fk.name AS [FK] 
    ,ps.name + '.' + pt.name AS [Referencing Table / Detail] 
    ,rs.name + '.' + rt.name AS [Referenced Table / Master] 
    ,fk.update_referential_action_desc 
    ,fk.delete_referential_action_desc 
FROM  
    sys.foreign_keys fk WITH (NOLOCK)  
        JOIN sys.tables pt WITH (NOLOCK) ON  
            fk.parent_object_id = pt.object_id  
        JOIN sys.schemas ps WITH (NOLOCK) ON  
            pt.schema_id = ps.schema_id 
        JOIN sys.tables rt WITH (NOLOCK) ON  
            fk.referenced_object_id = rt.object_id  
        JOIN sys.schemas rs WITH (NOLOCK) ON  
            rt.schema_id = rs.schema_id 
WHERE 
    fk.is_not_trusted = 1 OR fk.is_disabled = 1 
OPTION (RECOMPILE, MAXDOP 1);

You can validate constraints with ALTER TABLE CHECK CONSTRAINT
command. The word of caution though. This operation scans the table
acquiring schema modification (Sch-M) lock for duration of the scan.
Schedule it during the downtime, especially with the large tables.

Non-Indexed Foreign Keys
Foreign key constraints require you to have an index on constraint columns in
a referenced (master) table. You are not, however, required to have an index in
a referencing (detail) table. This may lead to very serious issues during
referential integrity checks.

Consider the situation when you delete the row in referenced table. SQL
Server needs to check if this operation violated the constraint and potentially
perform cascading action in referencing table. Without the index, it would lead
to the referencing table scan, which introduce performance and potential
blocking issues.

Listing 14-6 returns the list of foreign key constraints that don’t have
corresponding indexes in referencing tables defined. With very few
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exceptions, you want to create the indexes to support referential integrity
operations.

Example 13-6. Listing 14-6. Getting non-indexed foreign key constraints
SELECT 
    fk.is_disabled 
    ,fk.is_not_trusted 
    ,fk.name as [FK] 
    ,ps.name + '.' + pt.name AS [Referencing Table / Detail] 
    ,rs.name + '.' + rt.name AS [Referenced Table / Master] 
    ,fk.update_referential_action_desc 
    ,fk.delete_referential_action_desc 
    ,fk_cols.cols as [fk columns] 
FROM  
    sys.foreign_keys fk WITH (NOLOCK)  
        JOIN sys.tables pt WITH (NOLOCK) ON  
            fk.parent_object_id = pt.object_id  
        JOIN sys.schemas ps WITH (NOLOCK) ON  
            pt.schema_id = ps.schema_id 
        JOIN sys.tables rt WITH (NOLOCK) ON  
            fk.referenced_object_id = rt.object_id  
        JOIN sys.schemas rs WITH (NOLOCK) ON  
            rt.schema_id = rs.schema_id 
        CROSS APPLY 
        ( 
            SELECT  
                ( 
                    SELECT  
                        UPPER(col.name) AS [text()] 
                        ,',' AS [text()] 
                    FROM  
                        sys.foreign_key_columns fkc WITH (NOLOCK) 
                            JOIN sys.columns col WITH (NOLOCK) ON 
                                fkc.parent_object_id = col.object_id 
AND 
                                fkc.parent_column_id = col.column_id 
                    WHERE  
                        fkc.constraint_object_id = fk.object_id 
                    ORDER BY  
                        fkc.constraint_column_id 
                    FOR XML PATH('') 
                ) as cols 
        ) fk_cols 
WHERE 
    NOT EXISTS 
    ( 
        SELECT * 
        FROM  
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            sys.indexes i WITH (NOLOCK) 
                CROSS APPLY 
                ( 
                    SELECT 
                        ( 
                            SELECT 
                                UPPER(col.name) AS [text()] 
                                ,',' AS [text()] 
                            FROM  
                                sys.index_columns ic WITH (NOLOCK)  
                                    JOIN sys.columns col WITH (NOLOCK) 
ON 
                                        ic.object_id = col.object_id 
AND 
                                        ic.column_id = col.column_id 
                            WHERE 
                                i.object_id = ic.object_id AND 
                                i.index_id = ic.index_id AND 
                                ic.is_included_column = 0 
                            ORDER BY 
                                ic.partition_ordinal 
                            FOR XML PATH('') 
                        ) AS cols 
                ) idx_col 
        WHERE 
            i.object_id = fk.parent_object_id AND 
            CHARINDEX(fk_cols.cols,idx_col.cols) = 1 AND 
            i.is_disabled = 0 AND 
            i.is_hypothetical = 0 AND 
            i.has_filter = 0 AND 
            i.type IN (1,2) 
    ) 
OPTION (RECOMPILE, MAXDOP 1);

Redundant Indexes
As you remember from Chapter 5, the data in the composite B-Tree indexes is
sorted starting from left-most to right-most key columns. SQL Server may use
indexes for Index Seek operation as long as it has SARGable predicates on
left-most columns of the index.

Think about two indexes: IDX1(LastName) and IDX2(LastName, FirstName)
as the example. The data in both indexes is sorted based on LastName. Next,
IDX2 has the data sorted by FirstName within each LastName, while IDX1
would not have FirstName data sorted. Nevertheless, both indexes would
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support index seek on LastName data, which makes IDX1 redundant and
unnecessary.

Listing 14-7 shows you the code that you can use to detect potentially
redundant indexes with matching left-most column.

Example 13-7. Listing 14-7. Locating potentially redundant indexes
SELECT 
    s.name + '.' + t.name AS [Table] 
    ,i1.index_id AS [I1 ID] 
    ,i1.name AS [I1 Name] 
    ,dupIdx.index_id AS [I2 ID] 
    ,dupIdx.name AS [I2 Name]  
    ,LEFT(i1_col.key_col,LEN(i1_col.key_col) - 1) AS [I1 Keys] 
    ,LEFT(i1_col.included_col,LEN(i1_col.included_col) - 1) AS [I1 
Included Col] 
    ,i1.filter_definition AS [I1 Filter] 
    ,LEFT(i2_col.key_col,LEN(i2_col.key_col) - 1) AS [I2 Keys] 
    ,LEFT(i2_col.included_col,LEN(i2_col.included_col) - 1) AS [I2 
Included Col] 
    ,dupIdx.filter_definition AS [I2 Filter] 
FROM  
    sys.tables t WITH (NOLOCK)  
        JOIN sys.indexes i1 wITH (NOLOCK) ON 
            t.object_id = i1.object_id 
        JOIN sys.index_columns ic1 WITH (NOLOCK) ON 
            ic1.object_id = i1.object_id AND 
            ic1.index_id = i1.index_id AND  
            ic1.index_column_id = 1   
        JOIN sys.columns c WITH (NOLOCK) ON 
            c.object_id = ic1.object_id AND 
            c.column_id = ic1.column_id       
        JOIN sys.schemas s WITH (NOLOCK) ON  
            t.schema_id = s.schema_id 
        CROSS APPLY 
        ( 
            SELECT i2.index_id, i2.name, i2.filter_definition 
            FROM 
                sys.indexes i2 WITH (NOLOCK)  
                    JOIN sys.index_columns ic2 WITH (NOLOCK) ON        
                        ic2.object_id = i2.object_id AND 
                        ic2.index_id = i2.index_id AND  
                        ic2.index_column_id = 1   
            WHERE     
                i2.object_id = i1.object_id AND  
                i2.index_id > i1.index_id AND  
                ic2.column_id = ic1.column_id AND 
                i2.type in (1,2) AND 
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                i2.is_disabled = 0 AND  
                i2.is_hypothetical = 0 AND 
                ( 
                    i1.has_filter = i2.has_filter AND 
                    ISNULL(i1.filter_definition,'') =  
                        ISNULL(i2.filter_definition,'') 
                ) 
        ) dupIdx 
        CROSS APPLY 
        ( 
            SELECT 
                ( 
                    SELECT  
                        col.name AS [text()] 
                        ,IIF(icol_meta.is_descending_key = 1, ' 
DESC','')  
                            AS [text()] 
                        ,',' AS [text()] 
                    FROM                  
                        sys.index_columns icol_meta WITH (NOLOCK)  
                            JOIN sys.columns col WITH (NOLOCK) ON 
                                icol_meta.object_id = col.object_id 
AND 
                                icol_meta.column_id = col.column_id 
                    WHERE 
                        icol_meta.object_id = i1.object_id AND 
                        icol_meta.index_id = i1.index_id AND 
                        icol_meta.is_included_column = 0 
                    ORDER BY 
                        icol_meta.key_ordinal 
                    FOR XML PATH('') 
                ) AS key_col 
                ,(                 
                    SELECT  
                        col.name AS [text()] 
                        ,',' AS [text()] 
                    FROM                  
                        sys.index_columns icol_meta WITH (NOLOCK)  
                            JOIN sys.columns col WITH (NOLOCK) ON 
                                icol_meta.object_id = col.object_id 
AND 
                                icol_meta.column_id = col.column_id 
                    WHERE 
                        icol_meta.object_id = i1.object_id AND 
                        icol_meta.index_id = i1.index_id AND 
                        icol_meta.is_included_column = 1 
                    ORDER BY 
                        icol_meta.key_ordinal 
                    FOR XML PATH('') 
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                ) AS included_col 
        ) i1_col 
        CROSS APPLY 
        ( 
            SELECT 
                ( 
                    SELECT  
                        col.name AS [text()] 
                        ,IIF(icol_meta.is_descending_key = 1, ' 
DESC','')  
                            AS [text()] 
                        ,',' AS [text()] 
                    FROM                  
                        sys.index_columns icol_meta WITH (NOLOCK)  
                            JOIN sys.columns col WITH (NOLOCK) ON 
                                icol_meta.object_id = col.object_id 
AND 
                                icol_meta.column_id = col.column_id 
                    WHERE 
                        icol_meta.object_id = t.object_id AND 
                        icol_meta.index_id = dupIdx.index_id AND 
                        icol_meta.is_included_column = 0 
                    ORDER BY 
                        icol_meta.key_ordinal 
                    FOR XML PATH('') 
                ) AS key_col 
                ,(                 
                    SELECT  
                        col.name AS [text()] 
                        ,',' AS [text()] 
                    FROM                  
                        sys.index_columns icol_meta WITH (NOLOCK)  
                            JOIN sys.columns col WITH (NOLOCK) ON 
                                icol_meta.object_id = col.object_id 
AND 
                                icol_meta.column_id = col.column_id 
                    WHERE 
                        icol_meta.object_id = t.object_id AND 
                        icol_meta.index_id = dupIdx.index_id AND 
                        icol_meta.is_included_column = 1 
                    ORDER BY 
                        icol_meta.key_ordinal 
                    FOR XML PATH('') 
                ) AS included_col 
        ) i2_col 
WHERE 
    i1.is_disabled = 0 AND 
    i1.is_hypothetical = 0 AND 
    i1.type in (1,2)  
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ORDER BY 
    s.name, t.name, i1.index_id 
OPTION (RECOMPILE, MAXDOP 1);

You can usually drop redundant indexes and perform additional analysis
looking for the candidates for index consolidation. For example, you can
consolidate IDX3 and IDX4 indexes defined in Listing 14-8 into IDX5. Pay
attention to index usage statistics, as it may provide you the information what
indexes are rarely used.

Example 13-8. Listing 14-8. Examples of index consolidation
CREATE INDEX IDX3 ON T(LastName, FirstName) INCLUDE(Phone); 
CREATE INDEX IDX4 ON T(LastName) INCLUDE (SSN);  
--IDX3 and IDX4 can be consolidated to IDX5 
CREATE INDEX IDX3 ON T(LastName, FirstName) INCLUDE(Phone,SSN);

High Identity Values
One of silly, and the same time, very dangerous conditions you may encounter
is running out-of-capacity for integer-based columns. Think about the table
with INT IDENTITY PRIMARY KEY, which reaches the value of
2,147,483,647, which is the maximum INT data type allows you to store. All
further INSERT operations to the table would fail, which may lead to
production outage.

To make matter worse, this condition is hard to recover from. While you can
change the data type from INT to BIGINT, the ALTER TABLE ALTER
COLUMN statement may take hours or even days to complete on large tables.
Moreover, it would lock the table with schema modification (Sch-M) lock
during the execution. It is sad, but it is not uncommon to see people losing
their jobs when it happened.

Listing 14-8 shows the code you can use to detect identity columns that are
running out of capacity. You need to regularly run it on your systems and
proactively address the risks when you detect the issues.

Example 13-9. Listing 14-8. Identifying identity columns with high utilization
DECLARE 
    @Types table 
    ( 
        type_id int not null primary key, 
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        name sysname not null, 
        max_val bigint not null 
    ) 
INSERT INTO @Types(type_id, name, max_val) 
VALUES 
    (48,'tinyint',255) 
    ,(52,'smallint',32767) 
    ,(56,'int',2147483647) 
    ,(127,'bigint',9223372036854775807); 
DECLARE  
    @percentThreshold int = 50; 
SELECT  
    s.name + '.' + t.name AS [table] 
    ,c.name AS [column] 
    ,tp.name AS [type] 
    ,IDENT_CURRENT(t.name) AS [identity] 
    ,CONVERT(DECIMAL(6,3),  
        100. * IDENT_CURRENT(t.name) / tp.max_val 
    ) AS [percent full] 
FROM 
    sys.tables t WITH (NOLOCK)  
        JOIN sys.schemas s WITH (NOLOCK) ON 
            t.schema_id = s.schema_id 
        JOIN sys.columns c WITH (NOLOCK) ON  
            c.object_id = t.object_id 
        JOIN @Types tp ON 
            tp.type_id = c.system_type_id 
WHERE   
    c.is_identity = 1 AND 
    100. * IDENT_CURRENT(t.name) / tp.max_val > @percentThreshold 
ORDER BY 
    [percent full] DESC;

Obviously, that script would not catch the situation when the values are
generated in the code. You may also consider checking sys.sequences view
and see current sequence values as another layer of protection.

There are just a few examples of what you can do with catalog views to detect
inefficiencies and issues with the database schema. Explore other views and be
creative!

Now, let’s look at another goldmine of the information – index usage and
operational statistics.

Index Analysis
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As we all know, indexes help to improve performance of the queries.
Unfortunately, they come at cost – they increase amount of data in the
database, consume additional memory and add an overhead during data
modifications. The large number of inefficient and/or unused indexes may
significantly degrade system performance.

Query optimization process is essential part of performance tuning and more
often than not leads to creation of new indexes in the database. However,
unless you are operating in emergency situation, I’d always advocate to spend
time analyzing and removing inefficient indexes before starting to create the
new ones. It will remove the overhead they introduce and make the process of
optimization simpler.

SQL Server comes with two data management views for index usage analysis.
The first, sys.dm_db_index_usage_stats view provides you the information
how many queries used the index for seek, scan, update and lookup operations.
The second, sys.dm_db_index_operational_stats view gives you row-level
access and operational metrics including information about I/O, locking,
latching and a few others.

There is the key difference how the metrics are collected. The
sys.dm_db_index_usage_stats view provides the information on query level,
while sys.dm_db_index_operational_stats view works on the row level. For
example, if you run the query that inserts 1,000 rows to the table, the first view
will have user_updates value increased by one. In contrast, the
leaf_insert_count column in the second view will be incremented by 1,000.

SQL Server does not persist index usage statistics. The metrics in the views
will be cleared at time of SQL Server restart or when database becomes
offline. Moreover, in some old SQL Server builds (SQL Server 2012 prior
SP2-CU12 and SP3-CU3; SQL Server 2014 prior SP2), the metrics will be
cleared at time of index rebuild operation. You need to factor it into your
analysis making sure that statistics is representative and does not miss
important but unfrequently executed queries. Think about critical process in
accounting system that runs on schedule once per month as an example.

You also need to look at index usage on readable secondaries in Availability
Group setup. It is common to have some indexes to support queries on
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secondary nodes and those indexes may appear as unused on primary node.

Let’s look at both views in more details and see how we can interpret
information from them.

The sys.dm_db_index_usage_stats view
The sys.dm_db_index_usage_stats view is one of the main tools during index
usage analysis. It provides you the data on how often index had been used or,
to be precise, how many times queries utilized the index and index appeared in
the execution plans.

The data is grouped by access methods, and you’d see the separate metrics for
seek, scan and lookup operations. Finally, the view also shows how often the
index had been updated, which helps you to estimate update overhead it
introduces.

Listing 14-9 shows you the code that utilizes the view. I am renaming some of
the view columns in the output to make them more compact and will use both,
view column names and my aliases interchangeably in that chapter.

Example 13-10. Listing 14-9. Using sys.dm_db_index_usage_stats view
SELECT  
    t.object_id 
    ,i.index_id 
    ,s.name + '.' + t.name AS [Table] 
    ,i.name AS [Index]  
    ,i.type_desc 
    ,i.has_filter AS [Filtered] 
    ,i.is_unique AS [Unique] 
    ,p.rows AS [Rows] 
    ,ius.user_seeks AS [Seeks] 
    ,ius.user_scans AS [Scans] 
    ,ius.user_lookups AS [Lookups] 
    ,ius.user_seeks + ius.user_scans + ius.user_lookups AS [Reads] 
    ,ius.user_updates AS [Updates] 
    ,ius.last_user_seek AS [Last Seek] 
    ,ius.last_user_scan AS [Last Scan] 
    ,ius.last_user_lookup AS [Last Lookup] 
    ,ius.last_user_update AS [Last Update] 
FROM  
    sys.tables t WITH (NOLOCK)  
        JOIN sys.indexes i WITH (NOLOCK) ON 
            t.object_id = i.object_id 
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        JOIN sys.schemas s WITH (NOLOCK) ON  
            t.schema_id = s.schema_id 
        CROSS APPLY 
        ( 
            SELECT SUM(p.rows) AS [rows] 
            FROM sys.partitions p WITH (NOLOCK)  
            WHERE  
                i.object_id = p.object_id AND 
                i.index_id = p.index_id 
        ) p 
        LEFT OUTER JOIN sys.dm_db_index_usage_stats ius ON 
            ius.database_id = DB_ID() AND 
            ius.object_id = i.object_id AND 
            ius.index_id = i.index_id 
WHERE 
    i.is_disabled = 0 AND  
    i.is_hypothetical = 0 AND 
    t.is_memory_optimized = 0 AND 
    t.is_ms_shipped = 0 
ORDER BY 
    s.name, t.name, i.index_id 
OPTION (RECOMPILE, MAXDOP 1);

Figure 14-2 shows the output of the code.

www.datasense.ir



Figure 13-2. Sys.dm_db_index_usage_stats view output
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Let’s look at the columns in the output

database_id , object_id and index_id

The database_id, object_id and index_id columns reference database, table
and index respectively. You can use them to filter the output and join them
with sys.databases, sys.tables and sys.indexes catalog views.

user _ seek , user_scan and user_lookup

The user_seek, user_scan and user_lookup columns provide you the
information of how often queries used the index in Index Seek, Index
Scan, Key Lookup and RID Lookup operators. An efficient index B-Tree
index in OLTP system should primarily use an index seek.

Remember, however, as I discussed in Chapter 5, the seek operation is not
always efficient and may scan very large range of rows.

user_update

The user_update data shows how many times the index had been modified
by insert, update, delete or merge operations. In the nutshell, it allows you
to estimate the overhead required for index maintenance during data
modifications.

It is very important to remember that user_update represents how many
times operation occurred rather than how many rows it changed. For
example, the single DELETE call would always increment user_update
value by 1 regardless of how many rows were deleted.

last _ user_ seek , last_u ser_scan , last_user_lookup and last_u ser_ update

The last_user_* columns provide you the time of the last corresponding
operation in the index. That data is useful when SQL Server had not been
restarted and usage metrics have been collected for a long time.

system _seek , system _scan , system _lookup , system _update , last _ system
_seek , last_ system _scan , last_ system _lookup and last_ system _update

The system_* columns (not shown in the script and Figure 14-2) provides
the statistics on index usage by system processes. It includes statistics
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update, index maintenance and a few others. In most cases, you don’t need
to worry about those metrics.

Let’s look at a few common patterns in the view output and conclusions you
can draw from them.

U nused indexes
I’ve performed many SQL Server health checks in the past and I rarely saw
the systems that don’t have unused and unnecessary indexes present. Those
indexes are easy to detect as sys.dm_db_index_usage_stats view does not
show any read (user_seek, user_scan and user_lookup) activity in them.

Figure 14-3 shows an example of such output (I am removing some columns
from Listing 14-9 results to make output more concise). As you can see, the
indexes with index_id of 43 and 47 do not perform any reads.
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Figure 13-3. Unused indexes

In most cases, those indexes are the easiest to deal with. You can disable
and/or drop them with very little risk involved. Just remember and analyze a
few things before you do that.

First, as I’ve mentioned, make sure that those indexes are not used across all
Availability Group nodes. It is very common to see unused indexes on primary
node being heavily utilized for reporting on readable secondaries.

Second, make sure that usage statistics are representative and that you don’t
overlook infrequent processes the index supports. That condition is tricky. You
need to analyze the benefits and downsides of keeping the index. In some
cases, you may need to consider removing the index and its overhead and
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running infrequent processes inefficiently. You can also consider disabling the
index, re-enabling it on schedule when needed.

Finally, pay extra attention to unique indexes. They may support unique
constraints and removing them may lead to data quality issues.

Nevertheless, in many cases unused indexes are low-hanging fruit, and
removing them can immediately benefit the system.

Indexes with High Maintenance Cost
I’d consider indexes that have significantly higher number of updates over the
reads being the more complex case of unused indexes. You may benefit from
removing them; however, you need to analyze their usage and estimate
negative impact when infrequently executed queries run without them.

I don’t have formal threshold after which indexes should be analyzed.
Personally, I use several criteria’s. First, I’d check indexes with low number of
reads, especially those with low number of seeks (see index with index_id=40
on Figure 14-3). Next, I’d look at the indexes where number of updates is
significantly, order or orders of magnitude, higher than the number of reads
(index_id=53 on Figure 14-3).

You can get some of the queries that utilize the index using the code in Listing
14-10. This code analyzes plan cache data and may miss queries that don’t
have execution plan cached. You can adjust the code to run against
sys.query_store_plan and other Query Store catalog views if you have Query
Store enabled.

As the word of caution, the code is also slow – you may consider dumping
content of plan cache into the tables in utility database and do the analysis in
non-production environment.

Example 13-11. Listing 14-10. Detecting queries that use the index
DECLARE 
    @IndexName SYSNAME = QUOTENAME(’<INDEX NAME>’); 
;WITH XMLNAMESPACES 
(DEFAULT 'http://schemas.microsoft.com/sqlserver/2004/07/showplan')   
,CachedData 
AS 
( 
    SELECT DISTINCT 
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        obj.value('@Database','SYSNAME') AS [Database] 
        ,obj.value('@Schema','SYSNAME') + '.' + 
obj.value('@Table','SYSNAME')  
            AS [Table] 
        ,obj.value('@Index','SYSNAME') AS [Index] 
        ,obj.value('@IndexKind','VARCHAR(64)') AS [Type] 
        ,stmt.value('@StatementText', 'NVARCHAR(MAX)') AS [Statement] 
        ,CONVERT(NVARCHAR(MAX),qp.query_plan) AS query_plan 
        ,cp.plan_handle 
    FROM 
        sys.dm_exec_cached_plans cp WITH (NOLOCK)  
            CROSS APPLY sys.dm_exec_query_plan(plan_handle) qp 
            CROSS APPLY query_plan.nodes 
             
('/ShowPlanXML/BatchSequence/Batch/Statements/StmtSimple') batch(stmt) 
            CROSS APPLY stmt.nodes 
             
('.//IndexScan/Object[@Index=sql:variable("@IndexName")]') idx(obj) 
) 
SELECT 
    cd.[Database] 
    ,cd.[Table] 
    ,cd.[Index] 
    ,cd.[Type] 
    ,cd.[Statement] 
    ,CONVERT(XML,cd.query_plan) AS query_plan 
    ,qs.execution_count 
    ,(qs.total_logical_reads + qs.total_logical_writes) / 
qs.execution_count  
        AS [Avg IO] 
    ,qs.total_logical_reads 
    ,qs.total_logical_writes 
    ,qs.total_worker_time 
    ,qs.total_worker_time / qs.execution_count / 1000 AS [Avg Worker 
Time (ms)] 
    ,qs.total_rows 
    ,qs.creation_time 
    ,qs.last_execution_time 
FROM  
    CachedData cd 
        OUTER APPLY 
         ( 
            SELECT  
                SUM(qs.execution_count) AS execution_count 
                ,SUM(qs.total_logical_reads) AS total_logical_reads  
                ,SUM(qs.total_logical_writes) AS total_logical_writes 
                ,SUM(qs.total_worker_time) AS total_worker_time 
                ,SUM(qs.total_rows) AS total_rows 
                ,MIN(qs.creation_time) AS creation_time  
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                ,MAX(qs.last_execution_time) AS last_execution_time 
            FROM sys.dm_exec_query_stats qs WITH (NOLOCK) 
            WHERE qs.plan_handle = cd.plan_handle 
        ) qs 
OPTION (RECOMPILE, MAXDOP 1);

The further actions would depend on number of queries that utilize the index.
In some cases, you can refactor them switching to another index. In other
cases, you may drop the index or leave it in the database.

Inefficient Reads
Another target for analysis in OLTP environments is the indexes with large
number of scans, especially when that number is significantly higher than
number of seeks. Figure 14-4 shows such an example.

Figure 13-4. Indexes with inefficient reads

You can use similar approach as I discussed in previous section and find
queries that use those indexes. I usually start with indexes that have very little
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or no seeks at all. Queries that scan them usually need to be optimized, which
may allow to remove inefficient usage of the indexes.

Pay attention if index is filtered. It is common to scan filtered indexes and it
may be completely normal when index is small.

Inefficient Clustered Indexes and Heaps
In the tables with clustered indexes (index_id=1), large user_lookup value
indicates excessive Key Lookup operations. This is usually the sign of either
inefficient clustered indexes or presence of nonclustered indexes that do not
cover frequently-executed queries.

Figure 14-5 shows one of such examples. The clustered index shows large
number of lookups with no seeks at all. This pattern is very common when a
table has synthetic CLUSTERED PRIMARY KEY defined on IDENTITY
column and queries use different columns and indexes to access the data.

Figure 13-5. Inefficient clustered index

Some of those cases are very easy to analyze and address. For example, in the
case shown in Figure 14-5, the index with index_id=2 is clearly the one that
does not cover frequently-executed queries and lead to Key Lookup operations.
You can consider making it clustered index, especially if it is not very wide.
Alternatively, you can include additional columns to the index to cover the
queries.

Unfortunately, not all cases are easy and straightforward. For example, if you
look at the statistics shown in Figure 14-4, you’d see that the clustered index is
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used for both, Index Seek and Key Lookup operations. Neither does it clearly
show nonclustered index that may be responsible for lookups. In that case,
you’d likely want to keep existing clustered index, analyze queries against
nonclustered indexes and potentially make those indexes covering.

Finally, the large number of lookups in heap tables (index_id=0) indicates
excessive RID Lookup operations. The most common option to address it
would be changing one of frequently used nonclustered indexes to become
clustered.

Wrapping Up
The sys.dm_db_index_usage_stats view is the great tool to detect and remove
inefficient indexes. However, and I am repeating it over and over again, make
sure that you are working with the data collected from all servers in
Availability Group and over representative period of time.

It is also very beneficial to include the data provided by
sys.dm_db_operational_index_stats view into analysis. Let’s look at that view
in more details.

The sys.dm_db_index_operational_stats view
The sys.dm_db_index_operational_stats view provides low-level statistics on
index access methods, locking, latching, I/O and a few other areas. This data is
incredibly useful to troubleshoot index performance and identify locking and
latching bottlenecks.

Listing 14-11 shows the simple code that utilizes that view. I show it for demo
purposes here – you may benefit from combining the data together with
sys.dm_db_index_usage_stats and other views, as I’ll discuss later in the
chapter.

Example 13-12. Listing 14-11. Using sys.dm_db_index_operational_stats view
SELECT  
 t.object_id 
 ,i.index_id 
 ,s.name + '.' + t.name AS [Table] 
 ,i.name AS [Index]  
 ,i.type_desc 
 ,i.has_filter AS [Filtered] 
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 ,i.is_unique AS [Unique] 
 ,p.rows AS [Rows] 
 ,ous.* 
FROM  
 sys.tables t WITH (NOLOCK)  
  JOIN sys.indexes i WITH (NOLOCK) ON 
   t.object_id = i.object_id 
  JOIN sys.schemas s WITH (NOLOCK) ON  
   t.schema_id = s.schema_id 
  CROSS APPLY 
  ( 
   SELECT SUM(p.rows) AS [rows] 
   FROM sys.partitions p WITH (NOLOCK)  
   WHERE  
    i.object_id = p.object_id AND 
    i.index_id = p.index_id 
  ) p 
  OUTER APPLY sys.dm_db_index_operational_stats 
   (DB_ID(),i.object_id,i.index_id,NULL) ous 
WHERE 
 i.is_disabled = 0 AND  
 i.is_hypothetical = 0 AND 
 t.is_memory_optimized = 0 AND 
 t.is_ms_shipped = 0 
ORDER BY 
 s.name, t.name, i.index_id 
OPTION (RECOMPILE, MAXDOP 1);

Figure 14-6 shows the output of the code. You can look at the name of
columns in the output to get some sense on the information the view provides.
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Figure 13-6. Sys.dm_db_index_operational_stats view output
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I am not going to cover all columns in the output and encourage you to read
the documentation. Nevertheless, let’s look at a few categories of the columns
and discuss how to use them.

Data modification statistics
The leaf_insert_count, leaf_update_count, leaf_delete_count,
leaf_ghost_count, and leaf_allocation_count columns provide you information
about data modifications in the index. As the opposite to
sys.dm_db_index_usage_stats view, which counts number of operations,
sys.dm_db_index_operational_stats data gives you the number of affected
rows. You can correlate the information from both views to get better
understanding of index maintenance overhead.

In addition, sys.dm_db_index_operational_stats view provides the same
metrics for intermittent and root levels of B-Tree indexes though the set of
nonleaf_* columns. You can use them for troubleshooting of
ACCESS_METHODS_HOBT_VIRTUAL_ROOT latch caused by root-page
splits and contention.

Data access statistics
The singleton_lookup and range_scan_count columns provide you access
method data. The first column counts seeks and lookup operations that return
single rows. The second column counts Index Seek operations that perform the
range scan of multiple rows along with index scans. You can use that data to
estimate efficiency of index seeks based on singleton_lookup value. However,
it is impossible to estimate how large are the range scans based on
range_scan_count value alone.

The forwarded_fetch_count column gives you the number of forwarding-
pointer reads in heap tables. The heap tables with high value in that column
are inefficient and need to be rebuilt. You can use it together with
forwarded_record_count data in sys.dm_db_index_physical_stats view as I
discussed earlier in the chapter.

The lob_fetch_in_pages, lob_fetch_in_bytes, row_overflow_fetch_in_pages
and row_overflow_fetch_in_bytes columns give you statistics on off-row
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column access. The queries against those tables may select unnecessary
columns, perhaps using SELECT * antipattern.

Locking information
The row_lock_count, row_lock_wait_count, row_lock_wait_in_ms,
page_lock_count, page_lock_wait_count and page_lock_wait_in_ms columns
give you row- and page-level locking statistics. You can use this information
to detect the indexes and tables that suffers the most from the locking issues.

The index_lock_promotion_attempt_count and index_lock_promotion_count
columns contain the number of lock escalation attempts and successful lock
escalations on the index. The latter column is useful when you see high
percent of intent lock waits (LCK_M_I*), which are often triggered by lock
escalations.

Usually, I do not use sys.dm_db_index_operational_stats view as the main tool
for locking and blocking troubleshooting. Nevertheless, it is useful tool to
cross-check data collected from other venues I discussed in Chapter 8.

Latching information
The page_latch_wait_count, page_latch_wait_in_ms,
tree_page_latch_wait_count and tree_page_latch_wait_in_ms columns give
you page-latch statistics for the index. The former two columns show the data
for leaf-level index pages; the latter two – for intermediate and root pages.

Those metrics are extremely useful when you see high percent of
PAGELATCH waits generated in users’ databases. Indexes with highest page
latch waits are likely the ones that lead to hotspots and bottleneck.

I/O information
Similarly, page_io_latch_wait_count, page_io_latch_wait_in_ms,
tree_page_io_latch_wait_count and tree_page_io_latch_wait_in_ms columns
point you to the indexes that experienced the most PAGEIOLATCH waits.

As with locking troubleshooting, you should not use
sys.dm_db_index_operational_stats data as the main venue for I/O
performance troubleshooting. Nevertheless, it is useful to analyze indexes with

www.datasense.ir



the highest PAGEIOLATCH waits. You can drop them if they are not in use or
compress them and get immediate relief by decreasing I/O they introduce.

Wrapping Up
The sys.dm_db_index_operational_stats view provides you a lot of useful
information for the troubleshooting. The ability to look at low-level statistics
on per-index basis gives you another perspective to validate your assumptions
and confirm potential root-causes of the issues. Do not use it as the main
source to drive conclusions though.

Think about the situation when you troubleshoot disk subsystem performance.
You may detect and drop nonclustered indexes with highest
page_io_latch_wait_in_ms values; however, non-optimized queries will just
start scanning other indexes. Moreover, it could lead to even higher I/O
throughput if SQL Server start to scan larger clustered indexes.

The proper approach during the troubleshooting would be confirming non-
optimized queries as the source of the I/O bottleneck and then detect and
optimize most I/O intensive queries. You may not even need
sys.dm_db_index_operational_stats data during query optimization; however,
in some cases, it may help to pinpoint I/O intensive operators in the execution
plan.

There is one exception though – page latching. That
sys.dm_db_index_operational_stats view can be the key tool to identify
hotspots in the indexes. Obviously, you will need to analyze the schema and
workload, and confirm the assumption. Nevertheless, the view usually points
you in the right direction and speed up the troubleshooting.

As I said multiple times, look at the system holistically and utilize all tools
available for you. The index usage and operational statistics views are the
great tools to have in the toolbox.

Holistic View : sp_Index _Stats
The catalog and data management views provide you a lot of information for
analysis. Unfortunately, there are quite a few of them and you need to look at
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many different places to get the full picture. It becomes inconvenient and
slows down the process.

In my workflow, I addressed this by writing the stored procedure-
sp_Index_Stats- which combines the information from various views and
return it in the single output. I will share this code with you – you can
download it as part of this book’s companion materials or from my blog.

NOTE
The code will be available prior the book is published. It is not available at time of Early
Release of the chapter.

The stored procedure provides large amount of information including:

Index definition and metadata

Size of the index on-disk and in buffer pool

Index usage statistics

Index operational statistics

Statistics information

You can see the sample output in Figure 14-7.
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Figure 13-7. sp_Index_Stats output
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The stored procedure collects the information from one or multiple databases
and allows you to persist output in the table for further analysis. I usually
consolidate collected data from all Availability Group nodes in the single table
before I start researching it.

Obviously, you are not obligated to use that stored procedure. However, it
would speed up the process and simplify your work.

Summary
SQL Server catalog and data management views are the goldmines in
identifying inefficiencies in database design and indexing strategy. You need
to perform database schema and index usage analysis as part of system health
check.

You can use key system catalogs, such as sys.tables, sys.indexes,
sys.index_columns, sys.foreign_keys and others to identify database design
inefficiencies. The possible issues include inefficient heap tables and clustered
indexes, non-indexed foreign key constraints, redundant indexes, and many
others.

Always check if IDENTITY columns are reaching maximum data type
capacity. Reaching data type capacity may lead to prolonged downtime.

You can use the sys.dm_db_index_usage_stats view to analyze and detect
inefficient indexes in the database. It includes unused and suboptimal indexes,
indexes with high maintenance cost, and inefficient clustered indexes, among
other issues.

Another view, sys.dm_db_index_operational_stats, provides low-level
statistics on access, locking, latching and I/O. It may help you to detect
hotspots during page latching and find indexes that contribute to other
performance issues.

Both views are cleared when SQL Server restarts and when the database goes
offline. They do not represent index usage on secondary Availability Group
replicas. Make sure you are dealing with representative information during
your analysis.
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Finally, the sp_Index_Stats stored procedure provides holistic information
about indexes, including their metadata, size on disk and in buffer pool, and
usage and operational metrics. You can download it from the companion
materials.

Now, it’s time for us to discuss virtualizing, as well as troubleshooting SQL
Server in a virtualized environment.

Troubleshooting Checklist
Detect potential database-schema inefficiencies with catalog views

Review the current values and remaining capacity of IDENTITY
columns

Analyze index usage with the sys.dm_db_index_usage_stats and
sys.dm_db_index_operational_stats views and address possible issues
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