O'REILLY"

SQL Server Advanced
Troubleshooting and
Performance Tuning

Best Practices and Techniques

Early
Release

RAW &
UNEDITED

Dmitri Korotkevitch

www.datasense.ir

SQL Server Advanced
Troubleshooting and
Performance Tuning

Best Practices and Techniques

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take

advantage of these technologies long before the official release of these
titles.

Dmitri Korotkevitch

SQL Server Advanced Troubleshooting and Performance
Tuning

by Dmitri Korotkevitch
Copyright © 2021 Dmitri Korotkevitch. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Sarah Grey and Andy Kwan
Production Editor: Beth Kelly
Interior Designer: David Futato
Cover Designer: Karen Montgomery

[lustrator: Kate Dullea

May 2022: First Edition
Revision History for the Early Release

e 2020-12-18: First Release

2021-02-26: Second Release
2021-03-31: Third Release

2021-04-09: Fourth Release

2021-06-07: Fifth Release

www.datasense.ir

http://oreilly.com/

e 2021-09-23: Sixth Release
e 2021-12-21: Seventh Release

See http://oreilly.com/catalog/errata.csp?1sbn=9781098101923 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. SOL
Server Advanced Troubleshooting and Performance Tuning, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not
represent the publisher’s views. While the publisher and the author have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work 1is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-098-10186-2
[LSI]

www.datasense.ir

http://oreilly.com/catalog/errata.csp?isbn=9781098101923

Chapter 1. SQL Server Setup
and Configuration

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be Chapter 1 of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

Database servers never live in a vacuum. They belong to an ecosystem of
one or more applications used by customers. Application databases are
hosted on one or more instances of SQL Server, which, in turn, run on
physical or virtual hardware. The data is stored on disks that are usually
shared with other customers and database systems. Finally, all components
use a network for communication and storage.

The complexity and internal dependencies of database ecosystems make
troubleshooting a very challenging task. From the customers’ standpoint,
most problems present themselves as general performance issues:
applications might feel slow and unresponsive, database queries might time
out, or applications might not connect to the database. The root cause of the
issues could be anywhere. Hardware could be malfunctioning or incorrectly
configured; the database might have inefficient schema, indexing, or code;
SQL Server could be overloaded; client applications could have bugs or

design issues. This means you’ll need to take a holistic view of your entire
system in order to identify and fix problems.

This book is about troubleshooting SQL Server issues. However, we will
always start this by analyzing your application ecosystem and SQL Server
environment. This chapter will give you a set of guidelines on how to
perform that validation and detect most common inefficiencies in SQL
Server configuration. First, I’ll discuss the hardware and operating system
setup. Next, I’1l talk about SQL Server and database configuration. I’ll also
touch on the topic of SQL Server consolidation and the overhead that
monitoring can introduce into the system.

Hardware and Operating System
Considerations

In most cases, troubleshooting and performance-tuning processes happen in
production systems that host a lot of data and work under heavy loads. You
have to deal with the issues and tune the live systems. Nevertheless, it is
impossible to completely avoid discussion about hardware provisioning,
especially because you may find that your servers cannot keep up with the
load and need to be upgraded after troubleshooting.

I am not going to recommend particular vendors, parts or model numbers;
computer hardware improves quickly and any such specific advice would
be obsolete by the time the book is published. Instead, I’ll focus on
common-sense considerations with long-term relevance.

CPU

The license cost of a commercial database engine is, by far, the most
expensive part in the system, and SQL Server is not an exception: you
could build a decent server for less than the retail price of four cores in
Enterprise Edition. You should buy the most powerful CPU your budget
allows, especially if you are using non-Enterprise Editions, which limit the
number of cores you can utilize.

www.datasense.ir

Pay attention to CPU model. Each generation of CPUs will introduce
performance improvements over the previous ones. You may get 10% to
15% performance improvements just by choosing newer CPUs, even when
both generation of CPUs have the same clock speed.

In some cases, when licensing cost is not an issue, you may need to choose
between slower CPUs with more cores and faster CPUs with fewer cores. In
that case, the choice greatly depends on the system workload. In general,
Online Transactional Processing (OLTP) systems, and especially In-
Memory OLTP, would benefit from the higher single-core performance. A
data warehouse and analytical workload, on the other hand, may run better
with higher degree of parallelism and more cores.

Memory

There is a joke in the SQL Server community that goes like this:
Q. How much memory does SQL Server usually need?

A. More.

This joke has merits. SQL Server benefits from a large amount of memory,
which allows it to cache more data. This, in turn, will reduce amount of disk
input/output (I/O) activity and improve SQL Server’s performance.
Therefore, adding more memory to the server may be the cheapest and
fastest way to address some performance issues.

For example, suppose the system suffers from non-optimized queries. You
could reduce their impact by adding memory and eliminating the physical
reads they introduce. This, obviously, does not solve the root cause of the
problem. It is also dangerous, because as the data grows it eventually may
not fit into the cache. However, in some cases it may be acceptable as a
temporary Band-Aid solution.

The Enterprise Edition of SQL Server does not limit the amount of memory
it can utilize. Non-Enterprise editions have limitations. In terms of memory
utilization, Standard Edition of SQL Server 2016 and above can use up to
128GB of RAM for the buffer pool, 32GB of RAM per database for In-

www.datasense.ir

Memory OLTP data, and 32GB of RAM for storing columnstore index
segments. Web Edition memory usage is limited to half of what the
Standard Edition provides. Factor those limits into your analysis when you
are provisioning or upgrading non-Enterprise Edition instances of SQL
Server. Don’t forget to allocate some additional memory to other SQL
Server components, for example plan cache and lock manager.

In the end, add as much memory as you can afford. It is cheap nowadays.
There is no need to overallocate memory if your databases are small, but
think about future data growth.

Disk Subsystem

A healthy, fast disk subsystem is essential for good SQL Server
performance. SQL Server is very I/O intensive application - it is constantly
reading from and writing data to disk.

There are many options for architecting the disk subsystem for SQL Server
installations. The key is to build it in a way that provides low latency for
I/O requests. For critical tier-1 systems, I recommend not exceeding 3 to 5
milliseconds (ms) of latency for data files reads and writes, and 1ms to 2ms
of latency for transaction log writes. Fortunately, those numbers are now
easily achieved with flash-based storage.

There’s a catch, though: When you troubleshoot I/0O performance in SQL
Server, you need to analyze the latency metrics within SQL Server rather
than on the storage level. It is common to see significantly higher numbers
in SQL Server rather than in storage key performance indicators (KPIs),
due to the queueing that may occur with I/O intensive workload. (Chapter 3
will discuss how to capture and analyze 1/0O performance data.)

If your storage subsystem provides multiple performance tiers, I
recommend putting tempdb database on the fastest drive, followed by
transaction log and data files. The tempdb is the shared resource on the
server, and it is essential for this database to have good I/O throughput.

www.datasense.ir

The writes to transaction log files are synchronous. It is critical to have low
write latency for those files. The writes to transaction log are also
sequential; however, remember that placing multiple log and/or data files to
the same drive will lead to random I/O across multiple databases.

As a best practice, [°d put data and log files to the different physical drives
for maintainability and recoverability reasons. You need to look at the
underlying storage configuration though. In some cases, when disk arrays
do not have enough spindles, splitting them across multiple LUNs may
degrade disk array performance.

In my systems, I do not split clustered and nonclustered indexes across
multiple filegroups by placing them on different drives. It rarely improves
I/O performance unless you can completely separate storage path across the
filegroups. On the other hand, this configuration can significantly
complicate disaster recovery.

Finally, remember that some SQL Server technologies benefit from good
sequential I/O performance. For example, In-Memory OLTP does not use
random I/O at all, and performance of sequential reads usually becomes the
limiting factor for database startup and recovery. Data warehouse scans
would also benefit from sequential I/O performance when B-Tree and
columnstore indexes are not heavily fragmented. The difference between
sequential and random I/O performance is not very significant with flash-
based storage; however, it may be a big factor with magnetic drives.

Network

SQL Server communicates with clients and other servers via the network.
Obviously, it needs to provide enough bandwidth to support that
communication. There are a couple items I want to mention, though.

First, you need to analyze entire network topology when you troubleshoot
network-related performance. Remember that a network’s throughput will
be limited to the speed of its slowest component. You may have a 10 Gbps
uplink from the server; however, if you have 1Gbps switch in network path,
that would become the limiting factor. This is especially critical for

www.datasense.ir

network-based storage: make sure that I/O path to disks is as efficient as
possible.

Second, there is the common practice to build separate network for cluster
heartbeat in AlwaysOn Failover Cluster and AlwaysOn Availability
Groups. In some cases, people may also consider building separate network
for all Availability Group traffic. This is the good approach that improves
cluster reliability in simple configurations when all cluster nodes belong to
the same subnet and may utilize Layer-2 routing. However, in complex,
multi-subnet setup, multiple networks may lead to the routing issues. Be
careful with that setup and make sure that networks are properly utilized in
cross-node communication.

Virtualization adds another layer of complexity here. C

onsider a situation where you have a virtualized SQL Server cluster with
nodes running on different hosts. You would need to check that the hosts
can separate and route the traffic in the cluster network separately from the
client traffic. Serving all vLan traffic through the single physical network
card would defeat the purpose of a heartbeat network. (I will talk more
about troubleshooting network-related issues in Chapter 13.)

Operating Systems and Applications

As a general rule, I suggest using the most recent version of your operating
system that supports your version of SQL Server. Make sure that both the
OS and SQL Server are patched, and implement a process to do patching
regularly.

If you are using old version of SQL Server prior 2016, use 64-bit variant. In
the most cases, the 64-bit version outperforms 32-bit version and scales
better with the hardware.

Since SQL Server 2017, it’s been possible to use Linux to host the database
server. From a performance standpoint, Windows and Linux versions of
SQL Server are very similar. The choice of operating system depends on
enterprise ecosystem and on what your team is more comfortable to

www.datasense.ir

support. Keep in mind, that Linux-based deployments may require a
slightly different High Availability (HA) strategy compared to a Windows
setup. For example, you may have to rely on Pacemaker instead of
Windows Server Failover Cluster (WSFC) for automatic failovers.

Use a dedicated SQL Server host whenever possible. Remember that it’s
easier and cheaper to scale application servers—don’t waste valuable
resources on the database host!

On the same note, do not run nonessential processes on the server. I see
database engineers running SQL Server Management Studio (SSMS) in
remote desktop sessions all the time. It is always better to work remotely
and not consume server resources.

Finally, if you are required to run antivirus software on the server, exclude
any database folders from the scan.

Virtualization and Clouds

Modern IT infrastructure depends heavily on virtualization, which provides
additional flexibility, simplifies management, and reduces hardware costs.
As a result, more often than not, you’ll have to work with virtualized SQL
Server infrastructure.

There is nothing wrong with that. Properly implemented virtualization gives
you many benefits, with negligible performance overhead. It adds another
layer of High Availability with VMware vSphere vMotion or Hyper-V Live
Migration. It allows you to seamlessly upgrade the hardware and simplifies
database management. Unless you have the edge case when you need to
squeeze the most from the hardware, I suggest virtualizing your SQL Server
ecosystem.

NOTE

The overhead from virtualization increases on the large servers with many CPUs.
However, it still may be acceptable in many cases.

www.datasense.ir

Virtualization, however, adds another layer of complexity during
troubleshooting. You need to pay attention to the host’s health and load in
addition to guest virtual machine (VM) metrics. To make matters worse, the
performance impact of an overloaded host might not be clearly visible in
standard performance metrics in guest OS.

I will discuss several approaches to troubleshooting the virtualization layer
in Chapter 15 however, you can start by working with infrastructure
engineers to confirm that the host is not overprovisioned. Pay attention to
the number of physical CPUs and allocated vCPUs on the host along with
physical and allocated memory. Mission-critical SQL Server VMs should
have resources reserved for them to avoid performance impact.

Asides from the virtualization layer, troubleshooting virtualized SQL Server
instances is the same as troubleshooting physical ones. The same applies to
cloud installations when SQL Server is running within virtual machines.
After all, the cloud is just a different datacenter managed by an external
provider.

Configuring Your SQL Server

The SQL Server setup process’s default configuration is relatively decent
and may be suited to light and even moderate workloads. There are several
things you need to validate and tune, however.

SQL Server Version and Patching Level

SELECT @@VERSION is the first statement I run during SQL Server
system health checks. There are two reasons for that. First, it gives me a
glimpse of the system’s patching strategy, so I can potentially suggest some
improvements. Second, it helps me to identify possible known issues that
may exist in the system.

The latter one is very important. Many times, customers have asked me to
troubleshoot problems that had already been resolved by service packs and

www.datasense.ir

cumulative updates. Always look at the release notes to see if any of the
issues mentioned look familiar; your problem may have already been fixed.

You might consider upgrading to the newest version of SQL Server when
possible. Each version introduces performance, functional and scalability
enhancements. This is especially true if you move to SQL Server 2016 or
above from older versions. SQL Server 2016 was a milestone release that
included many performance enhancements. In my personal experience,
upgrading from SQL Server 2012 to 2016 and above can improve
performance by 20 to 40% without any additional steps.

It 1s also worth noting that starting with SQL Server 2016 SP1, many
former Enterprise Edition-only features became available in the lower-end
editions of the product. Some of them, like data compression, allow SQL
Server to cache more data in the buffer pool and improve performance of
the system.

Obviously, you need to test the system prior to upgrading — there is always
the chance of regressions. The risk is usually small with minor patching;
however, it increases with the major upgrades. You can mitigate some risks
with several database options, as you will see later in this chapter.

Instant File Initialization

Every time SQL Server grows data and transaction log files—either
automatically or as part of ALTER DATABASE command—it fills the
newly allocated part of the file with zeros. This process blocks all sessions
that are trying to write to the corresponding file and, in case of transaction
log, stops generating any log records. It may also generate the spike in I/O
write workload.

That behavior cannot be changed for transaction log files — SQL Server
always zeros them out. However, you can disable it for the data files by
enabling instant file initialization (IFI). This speeds up data file growth and
reduces the time required to create or restore databases.

www.datasense.ir

You can enable instant file initialization by giving an

SA MANAGE VOLUME NAME permission, also known as Perform
Volume Maintenance Task, to the SQL Server startup account. This can be
done in the Local Security Policy management application (secpol.msc).
You will need to restart SQL Server for the change to take effect.

In SQL Server 2016 and above, you can also grant this permission as part of
the SQL Server setup process (shown in Figure 1-1).

www.datasense.ir

150U Server 2019 Setup

Server Configuration

Specify the service accounts and collation configuration.

(Global Rules
Microsoft Update
Product Updates
Install Setup Files
Ingtall Rules
Installation Type
Product Key
License Terms
Feature Selection

Feature Rules

Instance Configuration
Server Configuration
Database Engine Configuration

Feature Configuration Rules

Ready to Install

Installation Progress

Complete

Service Accounts Cllation

Microsoft recommends that you use a separate account for each SOL Server senvice

Senvice Account Name Password Startup Type

SO Server Agent NT Servicel SCLAgentSS.. Manual v
SCL Server Database Engine NT Servicel MSSQLISCL.. Automatic v
SCL Server Browser NT AUTHORITY\LOCAL.. Automatic v

- _________________________|
(Grant Perform Volume Maintenance Task prvilege to SOL Server Database Engine Service

This privilege enables instant file infialization by avoiding zercing of data pages. This may lead
to information disclosure by allowing deleted content to be accessed,

Click here for details
|

< Back Neyt » Cancel

www.datasense.ir

Figure I-1. Enabling Instant File Initialization during SQL Server setup.

You can check if IFI is enabled by examining the

instant file initialization enabled column in the sys.dm_server services
data management view. This column is available in SQL Server 2012 SP4,
SQL Server 2016 SP1, and above. In older versions, you can run the code
shown in Listing 1-1.

Example 1-1. Checking if instant file initialization is enabled in old SOL
Server versions

DBCC TRACEON (3004,3605,-1);

go
CREATE DATABASE Dummy;

go
EXEC sp readerrorlog 0,1,N’Dummy’;

go
DROP DATABASE Dummy;

go
DBCC TRACEOFF (3004,3605,-1);

go

If IFI 1s not enabled, the SQL Server log will indicate that SQL Server is
zeroing out the mdf data file in addition to zeroing out the log 1df file, as

shown in Figure 1-2. When IFI is enabled, it will only show zeroing out of
the log Idf file.

www.datasense.ir

Loglete ProcessIfo Tet

0 001026 545,300 spidbls A comection teout s occurred while attenpting o establish & comection o avalla
15 200000 5:S6: 8,500 spddt OBCC TRACEON 304, srver prcess 10 (SPD) 5, This i an Informational nessae nly
6 201005 5550 sl BTN B8 s e | ﬁﬁm ST 15 ot ressge o
00 000 5568520 pidstf erodg COR\amyond from page to 102 (0 to D0
108 20000 (5056530 spddtf erodng conplted on C:0B\Dumy,ndf (elnged = 2 s

19 0 56850 pid m@)
M0 20000 505,500 spddt Zerodg conpleted on DB\ Lo L (elased = 2 g

0 W06 93035550 spidfl Starting up tabase Dum',

Figure 1-2. Checking if instant file initialization is enabled.

There is a small security risk associated with this setting. When IFI is
enabled, the database administrators may see some data from previously
deleted files in OS by looking at newly allocated data pages in the database.
This is acceptable in most systems; if so, enable it.

Tempdb Configuration

Tempdb is the system database used to store temporary objects created by
users and by SQL Server internally. This is a very active database and it
often becomes a source of contention in the system. I will discuss how to
troubleshoot tempdb-related issues in Chapter 9; in this chapter, I’ll focus
on configuration.

As already mentioned, you need to place tempdb on the fastest drive in the
system. Generally speaking, this drive does not need to be redundant nor

www.datasense.ir

persistent — the database is recreated at SQL Server startup, and local SSD
disk or cloud ephemeral storage would work fine. Remember, however, that
SQL Server will go down if tempdb is unavailable, so factor that into your
design.

If you are using non-Enterprise Editions of SQL Server and the server has
more memory than SQL Server can consume, you can put tempdb on the
RAM drive. Don’t do that with Enterprise Edition, though — you’ll usually
achieve better performance by using that memory for the buffer pool.

NOTE

Pre-allocate tempdb files to the maximum size of RAM drive and create additional
small data and log files on disk to avoid running out of space. SQL Server will not use
small on-disk files until RAM drive files are full.

The tempdb database should always have multiple data files. Unfortunately,
default configuration created by SQL Server setup is not optimal, especially
in the old versions of the product. We will discuss how to fine-tune the
number of data files in tempdb later in the book, but you can use the
following as the rule of thumb in initial configuration:

e Ifthe server has 8 or fewer CPU cores, create the same number of
data files.

e [f the server has more than 8 CPU cores, use either 8 data files or
1/4 of the number of cores, whichever is greater, rounding up in
batches of 4 files. For example, use 8 data files in the 24-core
server and 12 data files in the 40-core server.

Finally, make sure that all tempdb data files have the same initial size and
auto-growth parameters specified in megabytes (MB) rather than in
percentages. This will allow SQL Server to better balance the usage of the
data files, reducing possible contention in the system.

Trace Flags

www.datasense.ir

SQL Server uses trace flags to enable or change the behavior of some
product features. Although Microsoft has introduced more and more
database and server configuration options in new versions of SQL Server,
trace flags are still widely used. You will need to check any trace flags that
are present in the system; you may also need to enable some of them.

You can get the list of enabled trace flags by running the DBCC
TRACESTATUS command. You can enable them in SQL Server
Configuration Manager and/or by using -T SQL Server startup option.

Let’s look at some common trace flags.

T8

This trace flag prevents usage of mixed extents in SQL Server. This will
help to improve tempdb throughput in SQL Server 2014 and below by
reducing the amount of changes and, therefore, contention in tempdb
system catalogs. This trace flag is not required in SQL Server 2016 and

above, where tempdb does not use mixed extents by default.

Tlii7

With this trace flag, SQL Server auto-grows all data files in the
filegroup when one of the files is out of space. It provides more
balanced I/O distribution across data files. You should enable it to
improve tempdb throughput in old versions of SQL Server; however,
check if any users’ databases have filegroups with multiple unevenly
sized data files. As with T1118, this trace flag is not required in SQL
Server 2016 and above, where tempdb auto-grows all data files by

default.

12371

www.datasense.ir

https://docs.microsoft.com/en-us/sql/relational-databases/pages-and-extents-architecture-guide?view=sql-server-ver15

By default, SQL Server automatically updates statistics only after 20%
of the data in the index has been changed. This means that with large
tables, statistics are rarely updated automatically. The trace flag T2371
changes this behavior, making the statistics update threshold dynamic —
the larger the table is, the lower the percentage of changes required to
trigger the update. Starting with SQL Server 2016, you can also control
this behavior via database compatibility level. I recommend enabling
this trace flag unless all databases on the server have a compatibility

level of 130 or above.

13226

With this trace flag, SQL Server does not write information about
successful database backups to the error log. This may help to reduce

the size of the logs, making them more manageable.

T1222

This trace flag writes deadlock graphs to the SQL Server error log. This
flag 1s benign; however, it makes SQL Server log harder to read and
parse. It is also redundant — you can get deadlock graph from
System_Health Extended Event session when needed. I usually remove

this trace flag when I see it.

174199

This trace flag and the QUERY OPTIMIZER HOTFIXES database
option (in SQL Server 2016 and above) control the behavior of Query
Optimizer hotfixes. When enabled, the hotfixes introduced in service

packs and cumulative updates will be used. This may help to address

www.datasense.ir

some of Query Optimizer bugs and improve query performance;
however, it also increases the chance of plan regressions after patching.
I usually do not enable it in production systems unless it is possible to

perform thorough regression testing of the system before patching.

17412

This trace flag enables lightweight execution profiling infrastructure in
SQL Server 2016 and 2017. This allows you to collect execution plans
and many execution metrics for the queries in the system with little

CPU overhead. I am going to discuss it in more details in Chapter 5.

To summarize — in SQL Server 2014 and below, enable T1118, T2371 and,
potentially, T1117. In SQL Server 2016 and above, enable T2371 unless all
databases have compatibility level of 130 or above. After that — look at all
other trace flags in the system and understand what they are doing. Some
trace flags may be inadvertently installed by third-party tools and can
negatively affect server performance.

Server Options

SQL Server provides many configuration settings. I’ll cover many of them
in depth later in the book; however, there are a few settings worth
mentioning here.

Optimize for Ad-hoc Workloads

The first one is Optimize for Ad-hoc Workloads. This configuration option
controls how SQL Server caches execution plans of ad-hoc (non-
parameterized) queries. When it is disabled (by default), SQL Server caches
full execution plans of those statements, which may significantly increase
plan cache memory usage. As the opposite, when this setting is enabled,
SQL Server starts by caching the small structure (just a few hundred bytes)

www.datasense.ir

called plan stub, replacing it with the full execution plan if an ad-hoc query
1s executed the second time.

In majority of the cases, ad-hoc statements are not executed repeatedly, and
it 1s beneficial to enable Optimize for Ad-hoc Workloads setting in every
system. It could significantly reduce plan cache memory usage at cost of
infrequent additional recompilations of ad-hoc queries. Obviously, this
setting would not affect caching behavior of parameterized queries and T-
SQL database code.

NOTE

Starting with SQL Server 2019 and in Azure SQL Database, you can control Optimize
for Ad-hoc Workload behavior on the database level with the
OPTIMIZE FOR AD HOC WORKLOADS database scoped configuration.

Max Server Memory

The second important setting i1s Max Server Memory, which controls how
much memory SQL Server can consume. Database engineers love to debate
how to properly configure it, and there are different approaches to
calculating the proper value for the setting. Many engineers even suggest
leaving the default value in place and allowing SQL Server to manage it
automatically. In my opinion, it is best to fine-tune that setting, but it’s
important to do so correctly (Chapter 7 will discuss the details). An
incorrect setting will impact SQL Server performance more than if you
leave the default value in place.

One particular issue I often encounter during system health checks is severe
underprovisioning of this setting. Sometimes people forget to change it after
hardware or VM upgrades; other times, it’s incorrectly calculated in
nondedicated environments, where SQL Server is sharing the server with
other applications. In both cases, you can get immediate improvements by
increasing Max Server Memory or even setting it to the default value until
you perform full analysis later.

www.datasense.ir

Affinity Mask

You need to check SQL Server affinity and, potentially, set affinity mask if
SQL Server is running on hardware with multiple non-uniform memory
access (NUMA) nodes. In modern hardware, each physical CPU usually
becomes a separate NUMA node. If you restrict SQL Server from using
some of the physical cores, you need to balance SQL Server CPUs (or
schedulers — see chapter 2) evenly across NUMAs. For example, if you are
running SQL Server on a server with two 18-core Xeon processors and
limiting SQL Server to 24 cores, you need to set affinity mask to utilize 12
cores from each physical CPU. This will give you better performance than
having SQL Server use 18 cores from the first processor and 6 cores from
the second.

Listing 1-2 shows how to analyze SQL Server schedulers (CPUs)
distribution between NUMA nodes. Look at the count of schedulers for
each parent_node id column in the output.

Example 1-2. Checking the distribution of NUMA node schedulers (CPUs)

SELECT
parent node id
, COUNT (*) as [Schedulers]
,SUM (current tasks count) as [Current]
,SUM (runnable tasks count) as [Runnable]
FROM sys.dm os schedulers
WHERE status = 'VISIBLE ONLINE'
GROUP BY parent node id;

Parallelism

It is important to check parallelism settings in the system. Default settings,
like MAXDOP = 0 and Cost Threshold for Parallelism = 5, do not work
well in modern systems. As with Max Server Memory, it is better to fine-
tune the settings based on the system workload (Chapter 6 will discuss this
in detail). However, my rule of thumb for generic settings is:

e Set MAXDOP to 1/4 of the number of available CPUs in OLTP
and half those in Data Warehouse systems. Do not exceed the
number of CPUs in the NUMA node.

www.datasense.ir

e Set Cost Threshold for Parallelism to 50.

Starting with SQL Server 2016 and in Azure SQL Server Database, you can
set MAXDOP on the database level using the command ALTER
DATABASE SCOPED CONFIGURATION SET MAXDOP. This is useful
when the instance hosts databases that handle different workloads.

Configuration Settings

As with trace flags, analyze other changes in configuration settings that
have been applied on the server. You can examine current configuration
options using the sys.configurations view. Unfortunately, SQL Server does
not provide a list of default configuration values to compare, so you need to
hardcode it, as shown in Listing 1-3. I am including just a few configuration
settings to save space, but you can download the full version of the script
from this book’s companion website.

Example 1-3. Detecting changes in server configuration settings
DECLARE

@defaults TABLE

(

name SYSNAME NOT NULL PRIMARY KEY,
def value SQL VARIANT NOT NULL
)
INSERT INTO @defaults (name,def value) VALUES ('backup compression
default',0);
INSERT INTO @defaults(name,def_value) VALUES ('cost threshold for
parallelism',5);
INSERT INTO @defaults (name,def value) VALUES ('max degree of
parallelism',0);
INSERT INTO @defaults(name,def_value) VALUES ('max server memory
(MB) ',2147483647) ;
INSERT INTO @Qdefaults(name,def value) VALUES ('optimize for ad hoc
workloads',0);
/* Other settings are ommited in the book */
SELECT
c.name, c.description, c.value in use, c.value
,d.def value, c.is dynamic, c.is advanced
FROM
sys.configurations c¢ JOIN @defaults d ON
c.name = d.name
WHERE
c.value in use <> d.def value OR

www.datasense.ir

c.value <> d.def value
ORDER BY
c.name;

Figure 1-3 shows the sample output of the code. The discrepancy between
value and value in use columns indicates pending configuration changes
that require restart to take an effect. The is_dynamic column shows if
configuration option can be modified without restart.

Nt description vale_in_use value def value s dynanic 1 advanced

L max cegree of parallelisn — maxinun degree of paralle. 1 [l l

1 optinize for ad hoc workloads ~ When this option 1 sgt, w1 [l l

Figure 1-3. Non-default server configuration options.

Configuring Your Databases

As the next step in analyzing your configuration, you’ll need to validate
several database settings and configuration options. Let’s look at them.

Database Settings

SQL Server allows you to change multiple database settings, tuning
behavior to workload and other requirements. I’ll cover many of them later
in the book; however, there are a few settings [would like to discuss here.

The first one is Auto Shrink. When this option is enabled, SQL Server
periodically shrinks the database and releases unused free space from the
files to the OS. While this looks appealing and promises to reduce disk
space utilization, it may introduce issues.

Implementing this database shrink process, automatically or through the
command DBCC SHRINKFILE, works on the physical level. It locates
empty space in the beginning of the file and moves allocated extents from
the end of the file there, without taking extent ownership into consideration.

www.datasense.ir

This introduces noticeable load and lead to the serious index fragmentation.
What’s more, in many cases it’s useless: the database files simply expand
again as the data grows. It’s always better to manage file space manually

and disable Auto Shrink.

Another database option, Auto Close, controls how SQL Server caches data
from the database. When it’s enabled, SQL Server removes data pages from
the buffer pool and execution plans from the plan cache when the database
does not have any active connections. This will lead to performance impact
with the new workload when data needs to be cached and queries need to be
compiled again.

With very few exceptions, you should disable Auto Close. One such
exception may be an instance that hosts a large number of rarely accessed
databases. Even then, I would consider keeping this option disabled and
allowing SQL Server to retire cached data in the normal way.

Make sure that Page Verify option is set to CHECKSUM. This will detect
consistency errors more efficiently and helps to resolve database corruption
cases.

Pay attention to the database recovery model. 1f the databases are in
SIMPLE mode, in case of disaster or human error it would be impossible to
recover the data beyond the last FULL database backup. If you find the
database in this mode, immediately discuss it with the stakeholders, making
sure that they understand the risk of data loss.

Database Compatibility Level controls SQL Server’s compatibility and
behavior on the database level. For example, if you are running SQL Server
2019 and have a database with a compatibility level of 130 (SQL Server
2016), SQL Server will behave as if the database is running on SQL Server
2016. Keeping the databases on the lower compatibility levels simplifies
SQL Server upgrades by reducing possible regressions; however, it also
blocks you from getting some new features and enhancements.

As a general rule, run databases on the latest compatibility level that
matches the SQL Server version. Be careful when you change it: as with
any version change, this may lead to regressions. Test the system before the

www.datasense.ir

change and make sure you can roll back the change if needed, especially if
the database has a compatibility level of 110 (SQL Server 2012) or below.
Increasing compatibility level to 120 (SQL Server 2014) or above will
enable a new cardinality estimation model and may significantly change
execution plans for the queries. Test the system thoroughly to understand
the impact of the change.

You can force SQL Server to use legacy cardinality estimation models with
the new database compatibility levels by setting

LEGACY CARDINALITY ESTIMATION database option to ON in SQL
Server 2016 and above, or by enabling server-level trace flag T9481 in SQL
Server 2014. This approach will allow you to perform upgrade or
compatibility level changes in phases, reducing impact to the system.
(Chapter 5 will cover cardinality estimation in more detail.)

Transaction Log Settings

SQL Server uses write-ahead logging, persisting information about all
database changes in a transaction log. SQL Server works with transaction
logs sequentially, in merry-go-round fashion. In most cases, you won’t need
multiple log files in the system — they make database administration more
complicated and do not improve performance.

Internally, SQL Server splits transaction logs into chunks called Virtual Log
Files (VLF) and manages them as single units. For example, SQL Server
cannot truncate and reuse a VLF if it contains just a single active log record.
Pay attention to the number of VLFs in the database. Too few of them will
lead to very large VLFs, which make log management and truncation
suboptimal. Too many small VLFs will degrade the performance of
transaction log operations. Try not to exceed several hundred VLFs in
production systems.

The number of VLFs SQL Server adds when it grows a log depends on
SQL Server version and the size of the grows. In most cases, it creates 8
VLFs when the growth size is between 64MB and 1GB or 16 VLFs with

above 1GB growth. Do not use percent-based auto-growth configuration

www.datasense.ir

because it generates lots of unevenly sized VLFs. Change the log auto-
growth setting to grow the file in chunks — I usually use chunks of 1,024
MB, which generates 128MB VLFs unless I need very large transaction log.

You can count the VLFs in the database with sys.dm_db log info data
management view in SQL Server 2016 and above. In older versions of SQL
Server, you can obtain the information by running DBCC LOGINFO. If the
transaction log isn’t configured well, consider rebuilding it. You can do this
by shrinking the log to the minimal size and growing it in chunks of
1,024MB to 4,096 MB.

Do not auto-shrink transaction log files. They will grow again and affect
performance when SQL Server zeroes out the file. It is better to pre-allocate
the space and manage log file size manually. Do not restrict the maximum
size and auto-growth, though — you want logs to grow automatically in case
of emergencies. (Chapter 11 will provide more details on how to
troubleshoot transaction-log issues.)

Data Files and Filegroups

By default, SQL Server creates new databases using the single-file
PRIMARY filegroup and one transaction log file. Unfortunately, this
configuration is suboptimal from performance, database management and
High Availability standpoints.

SQL Server tracks space usage in the data files through system pages called
allocation maps. In systems with highly volatile data, allocation maps can
be a source of contention: SQL Server serializes access to them during their
modifications (more about this in Chapter 10). Each data file has its own set
of allocation map pages and you can reduce contention by creating multiple
files in the filegroup with the active modifiable data.

Ensure that data is evenly distributed across multiple data files in the same
filegroup. SQL Server uses an algorithm called Proportional Fill, which
writes most data to the file that has the most free space. Evenly sized data
files will help to balance those writes, reducing allocation maps contention.

www.datasense.ir

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-log-info-transact-sql

Make sure that all data files in the filegroup have the same size and auto-
growth parameters, specified in MBs.

You may also want to enable the AUTOGROW _ALL FILES filegroup
option (available in SQL Server 2016 and above), which triggers auto-
growth for all files in the filegroup simultaneously. You can use trace flag
T1117 for this in prior versions of SQL Server, but remember that this flag
is set on the server level and will affect all databases and filegroups in the
system.

It is often impractical or impossible to change the layout of existing
databases. However, you may need to create new filegroups and move data
around during performance tuning. Here are a few suggestions for doing so
efficiently:

e Create multiple data files in filegroups with volatile data. I usually
start with four files and increase the number if I see latching issues
(see Chapter 10). Make sure that all data files have the same size
and auto-growth parameters specified in MB; enable the
AUTOGROW_ALL FILES option. For filegroups with read-only
data, one data file is usually enough.

e Do not spread clustered indexes, and nonclustered indexes, or large
object (LOB) data across multiple filegroups. This rarely helps
with performance and may introduce issues in cases of database
corruption.

» Place related entities (for example, Orders and OrderLineltems) in
the same filegroup. This will simplify database management and
disaster recovery.

» Keep the PRIMARY filegroup empty if possible.

Figure 1-4 shows an example of a database layout for a hypothetical
shopping-cart system. The data is partitioned and spread across multiple
filegroups with the goal of minimizing downtime and utilizing partial
database availability in case of disaster.” It will also improve your backup

www.datasense.ir

strategy by implementing partial database backups and excluding read-only
data from FULL backups.

www.datasense.ir

i? 06

\
iﬁ(PRIMARY }System s ony
*[Catalogs] <- - Clsomers, Arties,

)

*[CurrentYearOrders] <

LastYearOrder| <

0] {- \F .} eably

ﬁ(Neetobe onin or & sysemto become operaional

www.datasense.ir

Figure 1-4. Database layout for a shopping cart system.

Analyzing SQL Server Error Log

SQL Server Error Log is another place I usually check at the beginning of
troubleshooting. I like to see any errors it has, which can point to some
areas to follow up. For example, errors 823 and 824 can indicate issues with
disk subsystem and/or database corruption.

You can read the content of the log in SSMS. You can also get it
programmatically using the xp_readerrorlog system stored procedure. The
challenge here is the amount of data in the log: the noise from the
information messages may hide useful data.

The code in Listing 1-4 helps you to address that problem. It allows you to
filter out unnecessary noise and focus on the error messages. You can
control the behavior of the code with the following variables:
@StartDate and @EndDate

e Define the time for analysis: @NumErrorLogs

e Specifies the number of log files to read if SQL Server rolls them
over: @ExcludeLogonErrors

e Omits logon auditing messages: @ShowSurroundingEvents
and @ExcludeLogonSurroundingEvents

These allow you to retrieve the information messages around the error
entries from the log. The time window for those messages is controlled by
the @SurroundingEventsBeforeSeconds and
@SurroundingEventsAfterSeconds variables.

The script produces two outputs. The first one shows the entries from the
error log that include word error. When @ShowSurroundingEvents
parameter is enabled, it would also provide log entries around those error
lines. You can also exclude some of log entries that contain the word error
from the output by inserting them to @ErrorsTolgnore table.

www.datasense.ir

Example 1-4. Analyzing SOL Server Error Log

IF OBJECT_ID('tempdb..#Logs',N'U') IS NOT NULL DROP TABLE #Logs;
IF OBJECT_ID(’tempdb..#Errors’,N'U') IS NOT NULL DROP TABLE
#Errors;
go
CREATE TABLE #Errors
(
LogNum INT NULL,
Logbhate DATETIME NULL,
ID INT NOT NULL identity(1,1),
ProcessInfo VARCHAR(50) NULL,
[Text] VARCHAR (MAX) NULL,
PRIMARY KEY (ID)
) ;
CREATE TABLE #Logs
(
[Loghate] DATETIME NULL,
ProcessInfo VARCHAR(50) NULL,
[Text] VARCHAR (max) NULL
) i
DECLARE
@StartDate DATETIME = DATEADD (DAY, -7,GETDATE ())
, @EndDate DATETIME GETDATE ()
, @NumErrorLogs INT = 1
, @ExcludelLogonErrors BIT = 1
, @ShowSurroundingEvents BIT = 1
, dExcludeLogonSurroundingEvents BIT 1
, @SurroundingEventsBeforeSecond INT 5
, @SurroundingEventsAfterSecond INT = 5 ,@LogNum INT = 0;

DECLARE
@ErrorsToIgnore TABLE
(
ErrorText NVARCHAR (1024) NOT NULL
) ;

INSERT INTO @ErrorsToIgnore (ErrorText)
VALUES

(N'Registry startup parameters:%'),
(N'Logging SQL Server messages in file%'),
(N'CHECKDB for database%finished without errors%');

WHILE (Q@LogNum <= @NumErrorLogs)
BEGIN

INSERT INTO #Errors (LogDate,ProcessInfo, Text)
EXEC [master].[dbo].[xp readerrorlog]
@LogNum, 1, N'error', NULL, @StartDate, @EndDate, N'desc';

www.datasense.ir

IF @Q@ROWCOUNT > O
UPDATE #Errors SET LogNum = @LogNum WHERE LogNum IS NULL;
SET @LogNum += 1;
END;

IF @ExcludelogonErrors = 1
DELETE FROM #Errors WHERE ProcessInfo = 'Logon';

DELETE FROM e
FROM #Errors e
WHERE EXISTS
(
SELECT *
FROM @ErrorsToIgnore i
WHERE e.Text LIKE i.ErrorText
) ;

-— Errors only
SELECT * FROM #Errors ORDER BY LogDate DESC;

IF @Q@ROWCOUNT > 0 AND @ShowSurroundingEvents = 1
BEGIN
DECLARE
@LogDate DATETIME
,@ID INT = 0

WHILE 1 =1
BEGIN
SELECT TOP 1 @LogNum = LogNum, @LogDate = LogDate, @ID = ID
FROM #Errors
WHERE ID > @ID
ORDER BY ID;

IF @@ROWCOUNT = 0
BREAK;

SELECT
@StartDate = DATEADD (SECOND, -@SurroundingEventsBeforeSecond,
@LogDate)
, @EndDate = DATEADD (SECONd, @SurroundingEventsAfterSecond,
@LogDate) ;

INSERT INTO #Logs (LogDate,ProcessInfo, Text)
EXEC [master].[dbo].[xp readerrorlog]
@LogNum, 1, NULL, NULL, @StartDate, @EndDate;
END;

IF @ExcludelogonSurroundingEvents = 1

www.datasense.ir

DELETE FROM #Logs WHERE ProcessInfo = 'Logon';

DELETE FROM e
FROM #Logs e
WHERE EXISTS

(
SELECT *
FROM @ErrorsTolIgnore 1
WHERE e.Text LIKE i.ErrorText

) ;

SELECT * FROM #Logs ORDER BY LogDate DESC;
END

I am not going to put the full list of possible errors here — it may be
excessive and, in many cases, is system specific. But you need to analyze
any suspicious data from the output and understand its possible impact on
the system.

Finally, I suggest setting up alerts for high-severity errors in SQL Server
Agent, if this has not already been done. You can read Microsoft
documentation on how to do that.

Consolidating Instances and Databases

You can’t talk about SQL Server troubleshooting without discussing
database and SQL Server instances consolidation. While consolidating
often reduces hardware and licensing costs, it doesn’t come for free; you
need to analyze its possible negative impact on the current or future system
performance.

There is no universal consolidation strategy that can be used with every
project. You should analyze the amount of data, load, hardware
configuration, and your business and security requirements when making
this decision. However, as a general rule, avoid consolidating OLTP and
Data Warehouse/Reporting databases on the same server when they are
working under a heavy load (or, if they are consolidated, consider splitting
them). Data warehouse queries usually process large amounts of data,

www.datasense.ir

https://docs.microsoft.com/en-us/sql/ssms/agent/alerts

which leads to heavy I/O activity and flushes the content of the buffer pool.
Taken together, this negatively affects the performance of other systems.

In addition, analyze your security requirements when consolidating
databases. Some security features, such as Audit, affect the entire server and
add performance overhead for all databases on the server. Transparent Data
Encryption (TDE) 1s another example: even though it is a database-level
feature, SQL Server encrypts tempdb when either of the databases on the
server has TDE enabled. This leads to performance overhead for all other
systems. As a general rule, do not keep databases with different security
requirements on the same instance of SQL Server. Look at the trends and
spikes in metrics and separate databases from each other when needed. (I
will provide code to help you analyze CPU, I/O and Memory usage on a
per-database basis later in the book.)

I suggest utilizing virtualization and consolidating multiple VMs on one or
a few hosts, instead of putting multiple independent and active databases on
a single SQL Server instance. This will give you much better flexibility,
manageability, and isolation between the systems, especially if multiple
SQL Server instances are running on the same server. It is much easier to
manage their resource consumption when you virtualize them.

Observer Effect

The production deployment of every serious SQL Server system requires
implementing a monitoring strategy. This may include third-party
monitoring tools, code built based on standard SQL Server technologies, or
both.

A good monitoring strategy is essential for SQL Server production support.
It helps you to be more proactive and reduces incident detection and
recovery times. Unfortunately, it does not come for free—every type of
monitoring adds the overhead to the system. In some cases, this overhead
may be negligible and acceptable; in others it may significantly affect
server performance.

www.datasense.ir

During my career as an SQL Server consultant, I’ve seen many cases of
inefficient monitoring. For example, one client was using a tool that
provided information about index fragmentation by calling the
sys.dm_db_index physical stats function, in DETAILED mode, every four
hours for every index in the database. This introduced huge spikes in I/O
and cleared the buffer pool, leading to a noticeable performance hit.
Another client used a tool that constantly polled various DMVs, adding
significant CPU load to the server.

Fortunately, in many cases, you will be able to see those queries and
evaluate their impact during system troubleshooting. This is not always the
case, however, with other technologies, for example with monitoring based
on Extended Events. (I will talk about methods for detecting inefficient
queries in Chapter 4). Extended Events is a great technology that allows
you to troubleshoot complex problems in SQL Server. It is not, however,
the best choice as a profiling tool. Some events are heavy and may
introduce large overhead in busy environments.

Let’s look at the example and create an xEvents session that captures
queries running in the system, as shown in Listing 1-5.

Example 1-5. Creating an xEvents session to capture queries in the system

CREATE EVENT SESSION CaptureQueries ON SERVER
ADD EVENT sqglserver.rpc completed
(
SET collect statement=(1)
ACTION
(
sqlos.task time,sglserver.client app name
sSglserver.client hostname
, Sglserver.database name
,Sglserver.nt username
;Sglserver.sqgl text
)
) 14
ADD EVENT sqglserver.sql batch completed
(
ACTION
(
sqlos.task time
,Sglserver.client app name

www.datasense.ir

;Sglserver.client hostname
s Sqlserver.database name
;Sglserver.nt username
,Sglserver.sqgl text

)

),
ADD EVENT sglserver.sql statement completed

ADD TARGET packageO.event file
(SET FILENAME=N'C:\PerfLogs\LongSgl.xel',K MAX FILE SIZE=(200))
WITH

(
MAX_ MEMORY =4096 KB
,EVENT RETENTION MODE=ALLOW SINGLE_ EVENT LOSS
,MAX DISPATCH LATENCY=5 SECONDS

) ;

Next, deploy it to the server that operates under a heavy load with a large
number of concurrent requests. Measure the throughput in the system, with
and without xEvents session running. Obviously, be careful—and don’t run
it on the production server!

Figure 1-5 illustrates CPU load and number of batch requests per second in
both scenarios on one of my servers. As you can see, enabling xEvents
session decreased throughput by more than 20%. To make matters worse, it
would be very hard to detect the existence of that session on the server.

www.datasense.ir

herifomin Tl oesoitomn Tk

toene U0 Whoesorlme 00

N el St N Srer
bt OT| et G

Figure 1-5. Server throughput with and without an active xEvents session.

Obviously, the degree of impact would depend on the system’s workload. In
either case, check for any unnecessary monitoring or data-collection tools
when you do the troubleshooting.

The bottom line: Evaluate the monitoring strategy and estimate its overhead
as part of your analysis, especially when the server hosts multiple
databases. For example, Extended Events work at the server level. While
you can filter the events based on database id field, the filtering occurs
after an event has been fired. This can affect all databases on the server.

Summary

System troubleshooting is a holistic process that requires you to analyze
your entire application ecosystem. You need to look at hardware, OS and

www.datasense.ir

virtualization layers, and at SQL Server and database configuration and
adjust them as needed.

SQL Server provides many settings that you can use to fine-tune the
installation to the system workload. There are also best practices that apply
to most systems, including enabling IFI and Optimize for Ad-Hoc
Workloads settings, increasing the number of files in tempdb, turning on
some trace flags, disabling Auto Shrink, and setting up correct auto-growth
parameters for database files.

In the next chapter, we’ll talk about one of the most important components
in SQL Server, SQLOS, and a troubleshooting technique called Wait
Statistics.

Troubleshooting Checklist

Troubleshoot for the following items:

e Perform a high-level analysis of hardware, network and disk
subsystem

e Discuss host configuration and load in virtualized environments
with infrastructure engineers

e Check OS and SQL Server versions, editions and patching level
e Check if instant file initialization is enabled

e Analyze trace flags

e Enable Optimize for Ad-Hoc Workloads

e Check memory and parallelism settings on the server

e Look at tempdb settings (including number of files); check for
trace flag T1118 and potentially T1117, in SQL Server versions
prior to 2016

e Disable Auto Shrink for databases

www.datasense.ir

Validate data and t-log file settings

Check number of VLFs in transaction log files

Check errors in SQL Server Log

Check for unnecessary monitoring in the system

1 For a deep dive into data partitioning and disaster recovery strategies, please see my book Pro
SQL Server Internals (2 nd ed., Apress, 2016).

www.datasense.ir

Chapter 2. SQL Server
Execution Model and Wait
Statistics

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be Chapter 2 of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

It 1s impossible to troubleshoot SQL Server instances without understanding
its execution model. You need to know how SQL Server runs tasks and
manages resources if you want to detect bottlenecks in the system. We will
cover those questions in this chapter.

First, the chapter will describe SQL Server’s architecture and major
components. Next, it will discuss SQL Server’s execution model and
introduce you to the popular troubleshooting technique called Wait
Statistics. It will also cover several data management views commonly used
during troubleshooting. Finally, it will provide you an overview of Resource
Governor, which you can configure to segregate different workloads in the
system.

SQL Server: High-Level Architecture

As you know, SQL Server is a very complex product that consists of dozens
of components and subsystems. It is impossible to cover all of them here,
but in this section, you’ll get a high-level overview. For the sake of
understanding, we’ll divide these components and subsystems into seven
categories, as shown in Figure 2-1. Let’s talk about them.

Protocol Layer (Client Communication)
uery Processor
e , Utiltes
Query Optimization Query Execution (DBCC
(Plan Generation, Costing, Statistics, etc) (Parallelism, Memory Grants, etc) dack .
ackup,
Storage Engine Rest orz
(Data Access, Locking Manager, In-Memory OLTP Engine BCP ’
Tran Log Management, etc) etc)’
SQLOS / PAL
(Scheduling, Resource Management, Deadlock Detection, etc|

Figure 2-1. Major SQL Server Components

The Protocol Layer handles communication between SQL Server and client
applications. It uses an internal format called Tabular Data Stream (TDS) to
transmit data using network protocols such as TCP/IP or Name Pipes. If a
client application and SQL Server are running on the same machine, you
can use another protocol called Shared Memory.

NOTE

It is worth checking what protocols are enabled when you troubleshoot client
connectivity issues. Some SQL Server editions, for example Express and Developer,
disable TCP/IP and Name Pipes by default. They do not accept remote client connections
until you enable network protocols in the SOL Server Configuration Manager utility.

www.datasense.ir

The Query Processor layer is responsible for query optimization and
execution. It parses, optimizes and manages compiled plans for the queries,
and orchestrates all aspects of query execution.

The Storage Engine is responsible for data access and management in SQL
Server. It works with the data on disk, manages transaction logs, and
handles transactions, locking and concurrency along with a few other
functions.

The In-Memory OLTP Engine supports In-Memory OLTP in SQL Server. It
works with memory-optimized tables and is responsible for data
management and access to those tables, native compilation, data persistence,
and all other aspects of the technology.

There are layers of abstraction between the components. For example,
Query Interop (not shown in Figure 2-1) allows the Query Processor to work
with row-based and memory-optimized tables, transparently routing
requests either to Storage or to In-Memory OLTP engines.

The most critical abstraction layer is SOQL Server Operating System
(SOLOS), which isolates other SQL Server components from the operating
systems and deals with scheduling, resource management and monitoring,
exception handling, and many other aspects of SQL Server behavior. For
example, when any SQL Server component needs to allocate memory;, it
does not call OS API functions: it requests memory from SQLOS. This
allows SQL Server granular control over execution and internal resource
usage without relying on the OS.

Finally, since the introduction of Linux support in SQL Server 2017, there is
another component called Platform Abstraction Layer (PAL), which serves
as a proxy between SQLOS and operating systems. Except for few
performance-critical use cases, SQLOS does not call OS API directly,
relying on PAL instead. This architecture allows SQL Server’s code to
remain almost identical in Windows and Linux, which significantly speeds
up development and product improvements.

From a troubleshooting standpoint, you’ll see very little difference between
SQL Server on Windows and on Linux. Obviously, you’ll use different

www.datasense.ir

techniques when analyzing the SQL Server ecosystem and OS
configuration. However, both platforms behave the same when you start to
analyze issues inside SQL Server, so [am not going to differentiate between
them 1n this book.

Let’s look at the layers in more detail, beginning with SQLOS.

SQLOS and the Execution Model

Database servers are expected to handle a large number of user requests, and
SQL Server is no exception. On a very high level, SQL Server assigns those
requests to separate threads, executing the requests simultaneously. Except
the cases when the server 1s idle, the number of active threads exceeds the
number of CPUs in the system, and efficient scheduling is the key to good
server performance.

Early versions of SQL Server relied on Windows scheduling. Unfortunately,
Windows (and Linux) are general purpose OSs, which means they use
preemptive scheduling. They allocate a time interval, or time quantum, to a
thread to run, then switch to other threads when it expires. This is an
expensive operation that requires switching between user and kernel modes,
negatively affecting system performance.

In SQL Server 7.0, Microsoft introduced the first version of User Mode
Scheduler (UMS)-a thin layer between Windows and SQL Server that was
primarily responsible for scheduling. It used cooperative scheduling, with
SQL Server threads coded to voluntarily yield every 4ms, allowing other
threads to execute. This approach significantly reduced expensive context
switching in the system.

NOTE

Some SQL Server processes, like extended stored procedures, CLR routines, external
languages and a few others, may still run in preemptive scheduling mode.

www.datasense.ir

Microsoft continued to make improvements in UMS in SQL Server 2000
and, finally, in SQL Server 2005 redesigned it to the much more robust
SQLOS. In later versions of SQL Server, SQLOS is responsible for
scheduling, memory and I/O management, exception handling, CLR and
external languages hosting, and quite a few other functions.

When you start an SQL Server process, SQLOS creates a set of schedulers
that manage workload across CPUs. The number of schedulers matches the
number of logical CPUs in the system, with additional scheduler created for
a Dedicated Admin Connection (DAC). For example, if you have two quad-
core physical CPUs with hyper-threading enabled, SQL Server will create
17 schedulers in the system. For all practical purposes, you can think of
schedulers as the CPUs; I will use those terms interchangeably throughout
the book.

NOTE

The Dedicated Admin Connection is your /ast resort troubleshooting connection. It
allows you to access SQL Server if it becomes unresponsive and does not accept normal
connections. I will talk about it in Chapter 13.

Each scheduler will be in an ONLINE or OFFLINE state, depending on its
affinity mask setting and core-based licensing model. The schedulers
usually do not migrate between CPUs; however, it is possible, especially
under heavy load. Nevertheless, in most cases this behavior does not affect
the troubleshooting process.

The schedulers are responsible to manage the set of worker threads,
sometimes called workers. The maximum number of workers in a system is
specified by the Max Worker Thread configuration option. The default value
of zero indicates that SQL Server calculates the maximum number of
worker threads based on number of schedulers in the system. In most cases,
you do not need to change this default value—in fact, don’t change it unless
you know exactly what you are doing.

www.datasense.ir

Each time there is a task to execute, it is assigned to an idle worker. When
there are no idle workers, the scheduler creates a new one. It also destroys
idle workers after 15 minutes of inactivity or in case of memory pressure.
Each worker uses 512KB of RAM in 32-bit and 2MB of RAM in 64-bit
SQL Server for the thread stack.

Workers do not move between schedulers; tasks do not move between
workers. SQLOS, however, can create child tasks and assign them to
different workers, for example in the case of parallel execution plans. This
may explain situations when some schedulers are running under heavier
loads than others — some workers could end up with more expensive tasks
from time to time.

You can think about workers as the logical representation of OS threads, and
tasks as the unit of works those threads handle.

In most cases, we focus on tasks during troubleshooting. There is an
exception, however: when a task is in the PENDING state, which means that
it is waiting for available worker after the task had been created. This is
completely normal, and workers are usually assigned to tasks very quickly.
However, it can also indicate a very dangerous condition when the system
does not have enough workers to handle the requests. I will discuss how to
detect and address that issue in Chapter 13.

Besides PENDING, a task may be in five other possible states:
RUNNING

The task is currently executing on the scheduler.

RUNNABLE

The task is waiting for the scheduler to be executed.

SUSPENDED

The task is waiting for an external event or resource.

SPINLOOP

www.datasense.ir

The task is processing a spinlock. Spinlocks are synchronization objects
that protect some internal objects. SQL Server may use them when it
expects that access to the object will be granted very quickly, avoiding
context switching for the workers. I will talk about troubleshooting

spinlock issues in Chapter 13.

DONE

The task is complete.

The first three states are the most important and common. Each scheduler
has at most one task in the RUNNING state. In addition, it has two different
queues—one for RUNNABLE and one for SUSPENDED tasks. When the
RUNNING task needs some resources—a data page from a disk, for
example—it submits an I/O request and changes the state to SUSPENDED.
It stays in the SUSPENDED queue until the request is fulfilled and the page
has been read. After that, when it is ready to resume execution, the task is
moved to the RUNNABLE queue.

Perhaps the closest real-life analogy to this process is a grocery-store
checkout line. Think of cashiers as schedulers and customers as tasks in the
RUNNABLE queue. A customer who is currently checking out is similar to
a task in the RUNNING state.

If item 1s missing a UPC code, a cashier sends a store worker to do a price
check. The cashier suspends the checkout process for the current customer,
asking her or him to step aside (to the SUSPENDED queue). When the
worker comes back with the price information, the customer moves to the
end of the checkout line (the end of the RUNNABLE queue).

Of course, SQL Server’s execution is much more efficient than a real-life
store, where customers must wait patiently in line for the price check to
complete. (A customer in the end of the RUNNABLE queue would
probably wish for such efficiency!)

www.datasense.ir

Wait Statistics

With exception of initialization and clean-up, a task spends its time
switching between RUNNING, SUSPENDED and RUNNABLE states, as
shown in Figure 2-2. The total execution time will include time in
RUNNING state, when task actually executed; time in RUNNABLE state,
when the task 1s waiting for scheduler (CPU) to execute; and time in
SUSPENDED state, when task is waiting for resources.

RUNNABLE

Waiting for Running on
available scheduler scheduler

Waiting for
resource or event

Figure 2-2. Task life cycle

In a nutshell, the goal of any performance-tuning process is improving
system throughput by reducing query execution times. You can achieve this
by reducing the time that query tasks spend in any of those states.

You can decrease query RUNNING time by upgrading hardware and
moving to faster CPUs or by reducing amount of work tasks perform with
query optimization.

You can shrink RUNNABLE time by adding more CPU resources or
reducing the load on the system.

www.datasense.ir

However, in most cases, you will get the most benefit by focusing on the
time that tasks spend in SUSPENDED state while waiting for resources.

SQL Server tracks the cumulative time tasks spend in SUSPENDED state
for different types of waits. You can view this data through the
sys.dm_os_wait stats view to get a quick sense of the main bottlenecks in
your system and further fine-tune your troubleshooting strategy.

The code in Listing 2-1 shows you the wait types that take the most time in
your system (filtering out some benign wait types, mainly related to internal
SQL Server processes that spend most time waiting). The data is collected
from the time of the last SQL Server restart, or since you last cleared it with
the DBCC SQLPERF(’sys.dm os wait_stats', CLEAR) command. Each
new SQL Server version introduces new wait types. Some are useful for
troubleshooting; others are benign and will need to be filtered out.”

Example 2-1. Getting top wait types in the system (SQL Server 2012 and

above)
;WITH Waits
AS
(
SELECT
wait type, wait time ms, waiting tasks count,signal wait time ms
,wait time ms - signal wait time ms AS resource wait time ms

,100. * wait time ms / SUM(wait time ms) OVER() AS Pct
,100. * SUM(wait time ms) OVER(ORDER BY wait time ms DESC) /
NULLIF (SUM(wait time ms) OVER(), 0) AS RunningPct
,ROW NUMBER () OVER (ORDER BY wait_time_ms DESC) AS RowNum
FROM sys.dm os wait stats WITH (NOLOCK)
WHERE
wait type NOT IN /* Filtering out non-essential system waits */

(N'BROKER EVENTHANDLER', N'BROKER RECEIVE WAITFOR',N'BROKER TASK STOP

v

,N'"BROKER TO FLUSH',N'BROKER TRANSMITTER',N'CHECKPOINT QUEUE',N'CHKP
Tl
,N'CLR SEMAPHORE',N'CLR AUTO EVENT',N'CLR MANUAL EVENT'

,N'DBMIRROR DBM EVENT',N'DBMIRROR EVENTS QUEUE',N'DBMIRROR WORKER QU
EUE'

, N'"DBMIRRORING CMD',N'DIRTY PAGE POLL',N'DISPATCHER QUEUE SEMAPHORE'

www.datasense.ir

yN'EXECSYNC',N'FSAGENT',N'FT IFTS SCHEDULER IDLE WAIT',N'FT IFTSHC M
UTEX'
,N'HADR CLUSAPI CALL',N'HADR FILESTREAM IOMGR IOCOMPLETION'
, N'"HADR LOGCAPTURE WAIT',N'HADR NOTIFICATION DEQUEUE'

,N'"HADR TIMER TASK',N'HADR WORK QUEUE',N'KSOURCE WAKEUP',N'LAZYWRITE
R _SLEEP'
,N'LOGMGR_QUEUE', N'ONDEMAND TASK QUEUE'
,N'PARALLEL REDO WORKER WAIT WORK',N'PARALLEL REDO DRAIN WORKER'
,N'PARALLEL REDO LOG CACHE',N'PARALLEL REDO TRAN LIST'
,N'PARALLEL REDO WORKER SYNC'
,N'PREEMPTIVE SP SERVER DIAGNOSTICS'
,N'PREEMPTIVE OS_LIBRARYOPS'
,N'PREEMPTIVE OS_COMOPS', N'PREEMPTIVE OS PIPEOPS'
,N'PREEMPTIVE OS_ GENERICOPS'
,N'PREEMPTIVE OS VERIFYTRUST'
,N'PREEMPTIVE OS_FILEOPS'
,N'PREEMPTIVE OS_ DEVICEOPS'
,N'PREEMPTIVE OS QUERYREGISTRY'
,N'PREEMPTIVE XE CALLBACKEXECUTE'
,N'PREEMPTIVE XE DISPATCHER',N'PREEMPTIVE XE GETTARGETSTATE'
,N'PREEMPTIVE XE SESSIONCOMMIT',N'PREEMPTIVE XE TARGETINIT'

,N'"PREEMPTIVE XE TARGETFINALIZE',N'PWAIT ALL COMPONENTS INITIALIZED'

,N'PWAIT DIRECTLOGCONSUMER GETNEXT',N'PWAIT EXTENSIBILITY CLEANUP TA
SK'

,N'QDS_PERSIST TASK MAIN LOOP SLEEP',N'QDS ASYNC QUEUE'

,N'QDS CLEANUP_STALE QUERIES TASK MAIN LOOP_ SLEEP'

,N'REQUEST FOR DEADLOCK SEARCH',N'RESOURCE QUEUE',N'SERVER IDLE CHEC
K' B B a B B -
,N'SLEEP BPOOL FLUSH',N'SLEEP DBSTARTUP',N'SLEEP DCOMSTARTUP'

,N'SLEEP MASTERDBREADY',N'SLEEP MASTERMDREADY',N'SLEEP MASTERUPGRADE
Dl
,N'SLEEP MSDBSTARTUP',N'SLEEP SYSTEMTASK',N'SLEEP TASK'

,N'SLEEP TEMPDBSTARTUP',N'SNI HTTP ACCEPT',N'SOS WORK DISPATCHER'
,N'SP _SERVER DIAGNOSTICS SLEEP',N'SQLTRACE BUFFER FLUSH'
, N'"SQLTRACE INCREMENTAL FLUSH SLEEP',N'SQLTRACE WAIT ENTRIES'
, N'STARTUP DEPENDENCY MANAGER',N'WAIT FOR RESULTS'
yN'"WAITFOR',N'WAITFOR TASKSHUTDOWN',N'WAIT XTP HOST WAIT'

,N'"WAIT XTP OFFLINE CKPT NEW LOG',N'WAIT XTP CKPT CLOSE',N'WAIT XTP
RECOVERY '

www.datasense.ir

,N'XE_BUFFERMGR_ALLPROCESSED_EVENT',N'XE_DISPATCHER_JOIN',N'XE_DISPA
TCHER WAIT'
,N'XE LIVE TARGET TVF',6N'XE TIMER EVENT')
)
SELECT
wl.wait type AS [Wait Type]
;wl.waiting tasks count AS [Wait Count]
, CONVERT (DECIMAL (12,3), wl.wait time ms / 1000.0) AS [Wait Time]
, CONVERT (DECIMAL(12,1), wl.wait time ms / wl.waiting tasks count)
AS [Avg Wait Time]
, CONVERT (DECIMAL (12,3), wl.signal wait time ms / 1000.0)
AS [Signal Wait Time]
, CONVERT (DECIMAL(12,1), wl.signal wait time ms /
wl.waiting tasks count)
AS [Avg Signal Wait Time]
, CONVERT (DECIMAL (12,3), wl.resource wait time ms / 1000.0)
AS [Resource Wait Time]
, CONVERT (DECIMAL(12,1), wl.resource wait time ms /
wl.waiting tasks count)
AS [Avg Resource Wait Time]
, CONVERT (DECIMAL (6,3), wl.Pct)
AS [Percent]
, CONVERT (DECIMAL (6,3), wl.RunningPct)
AS [Running Percent]
FROM
Waits wl

WHERE

wl.RunningPct <= 99 OR wl.RowNum = 1
ORDER BY

wl. RunningPct
OPTION (RECOMPILE, MAXDOP 1);

Figure 2-2 shows the output of this code from one of the production servers,
early in the troubleshooting process. I can immediately see that majority of
the waits in the system relate to blocking (LCK*) and I/O
(PAGEIOLATCH?®). This makes it much easier to decide where to focus my
troubleshooting efforts.

www.datasense.ir

Wait Type Wait Count Wait Time Avg Wait Time Signal Wait Time Avg Signal Wait Time

1 LCKM U 538312358 2952904.553 5.9 278904.178 1.8
2 PAGEIOLATCH_SH 1320856495 730022.059 5.0 17938.737 0.0
3 LCKMS 196405075 379378.938 1.9 24706.314 0.0
4 ASYNC_NETWORK_IO 36665258 254793.758 6.0 100063.339 2.8
5 LOGBUFFER 11718571 165042.270 14.0 18931.562 1.8
6 PAGEIOLATCH_EX 153474407 133057.566 0.0 3225.941 0.0
7 LCK_M_IX 496185 98525.504 198.8 139.082 0.0
8 I0_COMPLETION 93217317 81833.420 0.9 3505.294 0.0
9 LATCH_EX 49863173 65876.146 1.9 10921.396 0.0
10 ASYNC_IO_COMPLETION 57845 56036.933 968.0 22.078 0.8
11 LCK_M_IS 57448 31694. 644 551.0 9.403 0.8
12 LCK_M_SCH_M 2228 31016.126 13921.0 8.918 0.0
13 WRITELOG 1969821 26014.687 13.0 715.211 0.0
14 OLEDB 3041936 14911,992 4.0 6058.799 1.0

Resource Wait Time Avg Resource Wait Time Percent Running Percent

2674000.376 4.9 58.316 58.316
712083.322 5.0 14.417 72.733
354672.624 1.9 7.492 B0.226
154730.419 4.9 5.032 85.258
146110, 708 12,0 3.259 88.517
129831.625 0.2 2,628 91.145
08386.422 198.0 1.946 93.001
78328.126 8.9 1.616 94.707
54954.750 1.9 1.301 96.008
56014.855 968.0 1.107 97.114
31685, 241 551.0 0.626 97.740
31015.208 13928.0 8.613 98.353
25299.410 12.9 8.514 98.867
4853.193 2.0 8.294 99.161

Figure 2-3. Example of sys.dm_os_wait_stats output

This troubleshooting approach is called Wait Statistics Analysis. It’s the one
of the most frequently used troubleshooting and performance-tuning

www.datasense.ir

techniques in SQL Server. Figure 2-4 illustrates a typical troubleshooting
cycle using Wait Statistics Analysis.

Detect problematic area based
on top system waits

Find root-cause of the problem
(DMVs, Perf Counters, Events, Traces)

Fix the problem

Figure 2-4. Typical Wait Statistics Analysis Troubleshooting Cycle

First, you identify the main bottleneck in the system by analyzing the top
waits. Next, you confirm it with other tools and techniques and pinpoint the
root cause of the problem. Finally, you fix it and repeat the cycle.

WARNING

A word of caution: This process may never end. While there are always opportunities to
make things better, at some point further improvements become impractical. Remember
the Pareto Principle — you will get 80% of improvements by spending 20% of your time
— and don’t waste time on nonessential tuning.

This looks very easy in theory; unfortunately, it is more complicated in real
life. Many issues are related to each other, which can hide the real causes of
bottlenecks. To choose a very common example: excessive disk waits are
often triggered not by bad 1/O performance, but by poorly optimized queries
that constantly flush the buffer pool and overload the disk subsystem.

Figure 2-5 shows some of the high-level dependencies you might run into.
This diagram is by no means exhaustive, but it illustrates the danger of
tunnel vision during troubleshooting.

www.datasense.ir

Signal Waits Bad T-SQL Code
Locking / Blocking

. Parallelism = lf
ﬂ ﬂ Overhead (PU Load k’ Recompilations/

Ad-hoc activity

Non-optimized

queries j
%} Overloaded
o | (e
.% Subsystem

Figure 2-5. Dependencies and Issues

I considered listing the most common waits and possible root causes here,
but I don’t want you to start chasing symptoms rather than causes. Rather
than jumping right to a list, you read the book first so that you can
understand the possible dependencies involved.

I’11 start going through specific issues and troubleshooting techniques in the
upcoming chapters, but for now, let’s cover important data management
views in SQL Server related to SQLOS and the SQL Server execution
model.

Execution Model-Related Data Management
Views

SQL Server comes with a very large number of data management views
(DMV5s). For details on all of them, you can consult the Microsoft

www.datasense.ir

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views

Documentation. Here, I will focus on just a small subset that I regularly use
during troubleshooting. We will look at many others later in the book.

sys.dm_os_wait_stats

As you saw earlier, the sys.dm os wait_stats view provides information
about waits in the system. It will tell you how many times the wait occurs
(waiting_task count) along with cumulative times for resource
(resource_wait_time ms) and signal (signal wait time ms) waits. The
resource wait time indicates how long a task waited for the resource staying
in SUSPENDED queue. The signal wait indicates the wait for the CPU in
RUNNABLE queue after the resource wait was over.

For example, let’s say a task is requested to read a data page from disk. The
I/O request might take 6ms; then, the task might wait for another
millisecond to resume the execution. If you view the wait data for this,
you’ll see 6ms of resource waits, Ims of signal waits, and 7ms of total wait
time.

Listing 2-2 shows you how to compare cumulative signal and resource waits
in the system.

Example 2-2. Signal versus resource waits

SELECT
SUM(signal wait time ms) AS [Signal Wait Time (ms)]
, CONVERT (DECIMAL(7,4), 100.0 * SUM (signal wait time ms) /
SUM(wait time ms)) AS [% Signal waits]
,SUM(wait time ms - signal wait time ms) AS [Resource Wait Time
(ms)]
, CONVERT (DECIMAL(7,4), 100.0 * sum(wait time ms -
signal wait time ms) /
SUM(wait time ms)) AS [% Resource waits]
FROM
sys.dm os wait stats WITH (NOLOCK) ;

In most cases, signal waits should not exceed 10 to 15% of total wait time.

A higher number may indicate a CPU bottleneck, with tasks spending a lot
of time in the RUNNABLE queue. Do not jump to the conclusion that you

need to add more CPUs, though—it may be entirely possible to address the
problem with performance tuning.

www.datasense.ir

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql

Pay attention to how often waits occur. Sometimes, you’ll see waits with a
low waiting_task count and high total wait time. Depending on the
situation, you may or may not want to analyze them, especially during the
initial phase of troubleshooting. Such waits are often triggered by
production incidents or other atypical conditions.

Finally, make sure that you are working with representative data. As I
mentioned, statistics are collected from the time of the last SQL Server
restart, and workload on the server may change over time.

I usually ask customers to clear the waits a few days before starting the
troubleshooting. It is safe to use the DBCC
SQLPERF(’sys.dm_os wait stats', CLEAR) command in production,
although it may affect data collection in some third-party monitoring tools.
As another option, you can collect two separate snapshots of wait statistics
and calculate the delta between them. I am including the script to do that to
the companion materials of the book.

sys.dm_exec_session_wait_stats

Starting with SQL Server 2016, you can look at waits on the session level,
using the sys.dm_exec session_wait stats view. This is extremely useful
when you need to troubleshoot performance of long-running queries or slow
stored procedures in the system. The view will show you the waits that
occurred during execution and help you pinpoint bottlenecks and areas to
research.

The columns and data in this view are similar to those in
sys.dm_os_wait_stats; you can easily adjust scripts to work in both
scenarios. Remember that data in sys.dm_exec_session wait_stats clears
when a session opens and when the pooled connection resets.

You may notice that the data is not always updated for currently running
statements. You need to wait until a query completes for the data to become
available.

sys.dm_os_waiting_tasks

www.datasense.ir

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-session-wait-stats-transact-sql

The sys.dm_os_waiting_tasks view shows you a list of tasks that are
currently waiting in the SUSPENDED queue. This view is handy when the
server is overloaded or unresponsive and you want to understand why
sessions were suspended.

It is also very helpful when you troubleshoot concurrency issues and active
blocking in the system, because it shows you the session ID of the blocker
for the task (more in Chapter 8).

The most useful columns in this view are:
session_id

ID of the waiting session.
wait _type

Type of wait the session is waiting for.

wait _duration_ms

The duration of the wait.

blocking session id
The session blocking the current task. As I mention, this column is
extremely useful when you troubleshoot active blocking in the system.
resource_address

Information on the resource the task is waiting for.

You may have more than one row per session in the output when you deal
with parallel execution plans.

sys.dm_exec_requests

The sys.dm_exec_requests view provides detailed information on each
request that 1s executing on the server. This gives you a great at-a-glance

www.datasense.ir

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-waiting-tasks-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-requests-transact-sql

snapshot of what is happening now and allows you to pinpoint most CPU or
I/O intensive queries currently running in the system.

This view will return information for both user and system sessions. You
can filter out most system sessions by using WHERE session_id > 50
predicate, although you may have some system sessions with id greater than
50 nowadays.

The most useful columns in this view are:

session_id
The ID for the session. Unlike with sys.dm_os_ waiting_tasks, you get a
single row in the output per session unless you are using Multiple Active
Result Sets (MARS) in your system.

start_time

The time when the request started.

total elapsed_time

The request’s duration.

status

The current request status (RUNNING, RUNNABLE, SUSPENDED,
SLEEPING). SLEEPING status indicates an idle connection.
wait _type, wait _time, wait resource, blocking session_id

These appear if the request is currently suspended. Like
sys.dm_os waiting_tasks, the blocking session id column is very useful

when you are troubleshooting active blocking in the system.

cpu_time, logical reads, reads, writes, granted _query memory, dop

These provide you with execution metrics.

www.datasense.ir

sql_handle, plan_handle

These allow you to obtain the statement and its execution plan.

Listing 2-3 shows you the code that returns information about currently
running CPU-intensive requests, along with connection information. This
code requires SQL Server 2012 to run — you can remove TRY CONVERT
function if you have older version of SQL Server.

Example 2-3. Using sys.dm_exec requests view

SELECT
er.session id
,er.request id
,DB_NAME (er.database id) as [database]
,er.start time
, CONVERT (DECIMAL (21, 3) ,er.total elapsed time / 1000.) AS
[duration]
,er.cpu_time
;, SUBSTRING (
gt. text,
(er.statement start offset / 2) + 1,
((CASE er.statement end offset
WHEN -1 THEN DATALENGTH (gt.text)
ELSE er.statement end offset
END - er.statement start offset) / 2) + 1
) AS [statement]
,er.status
,er.wait type
,er.wait time
,er.wait resource
,er.blocking session id
,er.last wait type
,er.reads
,er.logical reads
,er.writes
,er.granted query memory
,er.dop
;€r.row_count
,er.percent complete
,es.login time
,e€s.original login name
,€s.host name
,€s.program_name
;C.client net address

www.datasense.ir

,ib.event info AS [buffer]
,qt.text AS [sgl]
, TRY CONVERT (XML,p.query plan) as [query plan]
FROM
sys.dm exec requests er WITH (NOLOCK)
OUTER APPLY sys.dm exec input buffer
(er.session id, er.request id) ib
OUTER APPLY sys.dm exec sgl text(er.sqgl handle) gt
OUTER APPLY
sys.dm exec text query plan
(
er.plan handle
,er.statement start offset
,er.statement end offset

) P

LEFT JOIN sys.dm exec connections ¢ WITH (NOLOCK) ON
er.session id = c.session_ id

LEFT JOIN sys.dm exec sessions es WITH (NOLOCK) ON
er.session id = es.session id

WHERE
er.status <> 'background'
AND er.session id > 50
ORDER BY
er.cpu_time desc
OPTION (RECOMPILE, MAXDOP 1);

As a word of caution: getting a query execution plan with
sys.dm_exec_text query plan function is expensive. Comment it out if your
server is running under heavy CPU load.

sys.dm_os_schedulers

I do not use the sys.dm_os_schedulers view very often, only from time to
time. As you can guess by the name, this view provides information about
schedulers in the system. You can use it to get information about schedulers’
distribution across NUMA nodes and to analyze metrics from individual
schedulers.

I’ve already shown you the code for the first use case in Chapter 1, but it is
worth repeating. Check the count of schedulers in each NUMA node to see
if the CPU affinity has been set correctly.

Example 2-4. NUMA nodes schedulers statistics

www.datasense.ir

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-schedulers-transact-sql

SELECT
parent node id
, COUNT (*) as [Schedulers]
,SUM(current tasks count) as [Current]
,SUM (runnable tasks count) as [Runnable]
FROM sys.dm os schedulers
WHERE status = 'VISIBLE ONLINE'
GROUP BY parent node id;

The current_tasks count and runnable tasks count columns provide the
number of tasks in the RUNNING and RUNNABLE queues in each node. A
large runnable tasks count number may indicate a CPU bottleneck.
Remember, however, that the numbers show what is happening in the
system now and may not be representative over time. It is better to see
cumulative information, for example the percentage of signal waits (see
Listing 2-2) or CPU load overtime (see Chapter 6).

There are many other columns in the view that provide scheduler-specific
statistics, such as status, number of workers and tasks in various states,
number of context switches, CPU consumption and a few others. Check the
documentation for more details.

Resource Governor Overview

Resource Governor is an Enterprise Edition feature that allows you to
segregate and throttle different workloads on the server. Although it’s been
available for quite a long time, I consider Resource Governor a niche feature
— I rarely see it in the field. (You may even consider skipping this section,
and coming back if and when you have to deal with it.) Nevertheless,
remember to check if Resource Governor is configured in the system you
are troubleshooting — incorrect configuration can seriously impact server
throughput.

When enabled, Resource Governor separates the sessions between different
workload groups by calling classifier function at the time of the session’s
login. The classifier function is a simple user-defined function where you
can use various connection properties (login name, application name, client
IP address, etc.) to choose between workload groups.

www.datasense.ir

Each workload group has several parameters, such as MAXDOP, maximum
allowed CPU time for the request, and the maximum number of
simultaneous requests allowed in the group. The workgroups are also
associated with a resource pool, where you can customize resource usage
for associated workload groups.

The SQL Server documentation refers to resource pools as “the virtual SQL
Server instances inside of a SQL Server instance.” I do not think this is an
accurate definition, though, because resource pools do not provide enough
isolation from each other. However, you can control and limit CPU
bandwidth and affinity, along with query memory grants (see Chapter 7).

Starting with SQL Server 2014, you can also control disk throughput by
limiting resource pool IOPS. You cannot, however, control buffer pool
usage—it is shared across all pools.

There are two system workload groups and resource pools: internal and
default. As you can guess by the names, the first handles internal workload.
The second is responsible for all non-classified workload. You can change
the parameters of the default workload group without creating other user-
defined workload groups and pools.

Figure 2-6 shows a Resource Governor configuration for an example
scenario in which you want to separate OLTP and reporting workloads. This
will reduce the impact of reporting queries on critical OLTP transactions,
preventing them from saturating CPU and 1/O.

www.datasense.ir

Session 1 IMPORTANCE=HIGH
GROUP_MAX_REQUESTS=15
ﬂ IMPORTANCE=LOW
MAX_DOP=)
Classification GROUP_MAX_REQUESTS:5

Workload
(Intﬁnal)(De Elut) Custﬁners (Mana§nen)(Repl}tng) Groups
Internal Default OLTP Reporting i
Pools
e AN
MIN_IOPS_PER VOLUME=500 MAX_IOPS_PER_VOLUME=200

CAP_CPU_PERCENT=50

Figure 2-6. Example of Resource Governor Configuration

Resource Governor is useful, but it is not the easiest feature to configure and
maintain. You need to do some planning and math when you want to
configure resource throttling across multiple busy resource pools.

You also need to reevaluate the settings overtime, because hardware and
workload requirements may change. I recently had to troubleshoot a case
where a major disk subsystem upgrade did not improve system
performance. We found that I/O in the system had been throttled by a
MAX 10PS PER VOLUME setting in the resource pool.

In conclusion, Resource Governor is good in use cases where you need to
segregate different workloads in a single database on a standalone server or
an instance that uses Failover Clustering. It 1s also useful for reducing the
impact of database maintenance. For example, you can limit CPU utilized

www.datasense.ir

by backup compression or I/O load from index maintenance by running
them in a separate resource pool.

I recommend looking at different technologies when you need to segregate a
different workload in the Always On Availability Groups setup. The
readable secondaries may provide better scalability in the long term.

In addition, when you need to segregate workloads from multiple databases
running on a single SQL Server instance, it’s usually better to split the
databases across multiple instances, and potentially virtualize them.

Summary

SQLOS is the vital subsystem responsible for scheduling and resource
management in SQL Server. At startup, it creates schedulers—one per
logical CPU—allocating the pool of worker threads to each scheduler to
manage. User and system tasks are assigned to the worker threads, which
perform the actual work.

SQL Server uses cooperative scheduling, with workers voluntarily yielding
every 4ms. The tasks constantly migrate through the RUNNING,
SUSPENDED, and RUNNABLE states while they are running on CPU or
waiting for CPU and resources. SQL Server tracks the different type of
waits and provides that information in sys.dm_os_wait_tasks view. You can
analyze the most common waits and identify bottlenecks in the system with
the troubleshooting process called Wait Statistics.

Be careful when analyzing waits; don’t jump to immediate conclusions.
Many performance issues may be related and can mask each other. You’ll
need to identify and confirm the root cause of the problem as part of your
analysis.

In the next chapter, we will dive deeper into troubleshooting particular
issues, starting with the disk, and learn how to diagnose and address them.

Troubleshooting Checklist

www.datasense.ir

Troubleshoot as follows:

e Look at the waits in the system. Make sure that wait statistics are
representative.

e Analyze percentages of signal and resource waits.
e Validate Resource Governor configuration when present.

» Triage the waits, looking for bottlenecks.

1 The code in Listing 2-1 is good for versions up to SQL Server 2019. To exclude other wait
types in future versions, see Microsoft’s documentation.

www.datasense.ir

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql

Chapter 3. Troubleshooting
Disk Subsystem Issues

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be Chapter 3 of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

SQL Server is a very I/O intensive application: it is constantly reading data
from and writing data to disk. Good I/O throughput is essential for SQL
Server performance and health. Unfortunately, many SQL Server
installations are I/O bound, even with modern flash-based storage.

In this chapter, I will show you how to analyze and troubleshoot disk
subsystem performance issues. You will learn how SQL Server processes
I/O requests internally and how to identify and detect possible bottlenecks
through the entire I/O stack, on the SQL Server, OS, Virtualization and
Storage levels.

Next, I will talk about checkpoint process tuning, a common source of I/O
bottlenecks in busy OLTP systems.

Finally, I will cover the most common I/O-related waits you may encounter
in your system.

Anatomy of the SQL Server I/O Subsystem

SQL Server never works with data pages directly in database files. Every
time a data page needs to be read or modified, SQL Server reads that page
to memory and caches it in the buffer pool. Each page in a buffer pool is
referenced by a buffer structure, sometimes simply called buffer. It includes
the page’s address in the data file, a pointer to the data page in the memory,
status information, and the page latching queue.

SQL Server uses latches to protect internal objects in memory preventing
their corruptions when multiple threads modifying them simultaneously.
The two most common types of latch are exclusive, which blocks any
access to the object, and shared, which allows simultaneous reads but
prevents modifications of the objects.

Conceptually, latches are similar to critical sections or mutexes in
application development languages. We will talk about latches in detail in
Chapter 10.

The location of data pages in a buffer pool does not represent the order in
which they are stored in the database files. SQL Server, however, can
efficiently locate the page in the buffer pool when needed. Every time SQL
Server accesses the page there, it performs a logical read. When the page is
not present in memory and needs to be read from disk, the physical read
also occurred.

When data needs to be modified, SQL Server changes the pages in the
buffer pool, marking them as dirty, then writes log records to the transaction
log file. It saves dirty pages to the data files asynchronously in the
Checkpoint and, sometimes, the Lazy Writer processes. We’ll discuss both
of those processes later in this chapter and transaction logs in Chapter 11.
For now, remember that data modifications require SQL Server to read data
pages from disk if they have not been already cached.

Now let’s look at how SQL Server works with I/O in more detail.

Scheduling and 1/O

www.datasense.ir

As you remember from chapter 2, SQL Server uses cooperative scheduling,
with multiple workers running on CPUs in a rotating fashion. The workers
voluntarily yield when the short quantum expires, allowing other workers to
proceed. This model requires SQL Server to use asynchronous I/O as much
as possible — it is impossible for workers to wait until I/O request is
completed, preventing other workers from executing.

By default, all SQL Server schedulers handle 1/0O requests. You can override
this behavior and bind /O to specific CPUs by setting the affinity I/O mask.
In theory, this may help improve I/O throughput in very busy OLTP
systems; however, I rarely find it necessary. In most cases, you’ll achieve
better results by performing optimizations and reducing CPU and 1/O load.

You can read about affinity I/O masking in the Microsoft documentation.

Every scheduler has a dedicated 1/O queue. When a worker needs to
perform an I/O operation, it creates an I/O request structure, puts it to the
scheduler’s queue and finally issues an asynchronous OS API 1/O call. It
does not wait until the request is completed; it either continues to run, doing
other things, or suspends itself, moving to the SUSPENDED queue.

When a new worker starts to run on the scheduler (switching to RUNNING
state), it goes through the scheduler’s I/O queue. The I/O request structures
contain enough information to check if the asynchronous OS API call has
been completed, along with a pointer to callback function that the worker
calls to complete the I/O request in SQL Server.

I know that this sounds complicated — please bear with me and we’ll look at
the details in the next section. The key things 1’d like you to remember are:

All active schedulers are handling 1/0 requests by default.
Most I/O requests in SQL Server use asynchronous OS API calls. This

is true even for write-ahead logging — the worker that issues the
COMMIT statement may be suspended until the log record is written to
disk; however, the OS API write command will be executed

asynchronously.

www.datasense.ir

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/affinity-input-output-mask-server-configuration-option

The 1/O request may be completed by a different worker than the one that
issues it.

You can see a list of pending I/O requests in the

sys.dm 1o pending io requests view. The io pending ms_ticks
column provides the duration of that request. The io_pending column
indicates if the OS API call has been completed and if the request is
waiting for a worker to finish it. This may help you to determine if

request latency is being affected by CPU load in the system.

Now, as promised, let’s look at that process again, with more concrete
examples of reading data pages from disk.

Data Reads

When SQL Server needs to access a data page, it checks if the page already
exists in buffer pool. If it does not, the worker allocates the buffer for the
page, protecting it with an exclusive latch. This prevents workers from
accessing the page until it is read — they will be blocked, waiting for the
latch to clear.

Next, the worker creates the I/O request structure, puts it in the scheduler
I/O queue, and initiates an OS API read request. Then it tries to acquire
another shared latch on the buffer, which is blocked by the incompatible,
exclusive latch held there. The worker then suspends itself with
PAGEIOLATCH wait (Figure 3-1 illustrates that state).

www.datasense.ir

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-io-pending-io-requests-transact-sql

@ 15369
hPage

1

Latch BUF with
Alatch |

)

Put 1/0 request
tothequeve |/

/
3 \
\

Acquire SH latch /f |
on BUF

bStats

Asynchronous 1/ call

/0 Request

Being suspended with

PAGEIQLATCH wait Scheduler /0 Quee

|

sys.dm_io_pending io_requests

www.datasense.ir

Figure 3-1. Reading data page from disk — initiating read

When another worker switches to a RUNNING state, it checks to see if any
I/0 requests in the scheduler’s queue have been completed. If so, the
worker calls the callback function to finalize the operation: this validates
that page 1s not corrupted and removes the exclusive latch from the buffer.
The worker that submitted the I/O request can then resume and access the
data page (Figure 3-2).

www.datasense.ir

Worker

Worker

Checkifaliscomplted
J/ HasOverpped OCompltea]

\

Vet RMARE

(UeLe nd resume the
plecuton

10 Request

Sehedtler0 Quete

)

-/
/
/
/

-/
/

/ b
!
’l
) Vo
\Y' Call calleck fncton f request
/\\// s complted
\) /
// \\\ 7 l
/ \\

\FWWNme%MMWMw
P latn

www.datasense.ir

Figure 3-2. Reading data page from disk — completing the read

There are several errors that may occur during I/O requests. All of them are
severe, and you need to set up alerts in the system for them.

e Error 823 indicates that the OS I/O API call was not successful.
This is often a sign of hardware issues.

e Errors 605 and 824 indicate logical consistency issues with the
data pages. When you encountered either of these errors,
immediately check whether the database is corrupted, using the
DBCC CHECKDB command. You may also encounter those errors
in case of faulty I/O drivers, which can corrupt data pages during
transfer.

e Error 833 tells you that an I/O request (OS API call) took longer
than 15 seconds to return. This i1s abnormal; check the health of the
disk subsystem when you see this error.

e Error 825 indicates that an I/O request failed and had to be retried
in order to succeed. As with Error 833, check the health of the disk
subsystem.

When troubleshooting those errors, you can look for the details in your SQL
Server error log (use the code from Listing 1-4) and system event log.

It is very common for SQL Server to read multiple data pages in a single
I/O request. For example, it uses read-ahead logic, reading multiple data
pages during scans. As result, the query may perform thousands of logical
reads with just a handful of physical reads. Another example is ramp-up
reads, which is when SQL Server reads a large number of pages on each I/O
request, trying to fill the buffer pool quickly on startup.

Data Writes

SQL Server handles data writes very similarly to data reads. In most cases,
those writes are done asynchronously using a scheduler’s I/O queues, as

www.datasense.ir

you just saw in the previous examples. Obviously, the callback function will
be implemented differently in different I/O operations.

When you change some data in the database, SQL Server modifies data
pages in the buffer pool, reading pages from disk if needed. It generates log
records for the modifications and saves them to the transaction log. The
transaction is not considered to have been committed until the log records
are hardened on disk. While, technically, you can treat write-ahead logging
as synchronous writes, SQL Server uses an asynchronous I/O pattern for
log writes.

SQL Server writes modified data pages in user databases asynchronously
during checkpoint. This process finds dirty data pages in the buffer pool and
saves them to disk. It tries to minimize the number of disk requests by
combining and writing adjacent modified pages together in a single I/O
operation when possible.

Another SQL Server process, called lazy writer, periodically sweeps the
buffer pool to remove data pages that have not been recently accessed,
freeing up the memory. In normal circumstances, lazy writer skips dirty
data pages; however, it may also write them to disk if there i1s memory
pressure in the system.

There are, as always, some exceptions. For example, during a bulk import
operation, SQL Server allocates a set of buffers in the buffer pool and
reuses them, writing data to the database outside of checkpoint. This
preserves the content of the buffer pool, so it isn’t flushed by massive data
imports.

Checkpoint I/O may introduce issues on busy systems. I will talk about
checkpoint tuning later in this chapter. But first, let’s take a holistic look at
the entire storage subsystem.

The Storage Subsystem: A Holistic View

Troubleshooting slow I/O performance in SQL Server is not an easy task.
I’ve seen many heated discussions between database and infrastructure

www.datasense.ir

teams. Database engineers generally complain about slow disk
performance, while the storage engineers analyze the metrics from SAN
devices with sub-millisecond latency and insist that all issues are on the
SQL Server side. Neither team is right. They usually make the same
mistake: oversimplifying the storage subsystem to just a couple of
components. However, the storage subsystem isn’t that simple.

Figure 3-3 shows a very high-level diagram of the network-based storage
subsystem, with many details missing. (It also references some
troubleshooting tools. We’ll get to those, but don’t focus on them yet.) The
point here is that bad I/O performance can be caused by any component, so
you need to analyze all layers in the stack.

www.datasense.ir

ChecknointPages/sec, Background Writer Pages/sec,Lany wrter/sc
Pages reads/sec, Pages writes/se, og Bytes Flushed)ec

Ave Disk Queue Leng

A Diskse /Read
A Disk sec/Wirie
Disk Reas/sec
Dik Read Bytes/sec

kRe
/ / " Dik Wrtes/sec
* it Disk Write Bytes/sec

sys.dm_io virtual fle stats
Log Fush Wrie Time s

Datastore atency, 10PS Quete
and throughput Pl fengh
Storage
— ™

Storage latency, 10PS and throughput KPI

www.datasense.ir

Figure 3-3. Storage Subsystem (Network-Based)

There 1s also an option of using direct-attached storage (DAS). In this
configuration, the storage either installed locally on the server (think about
NVMe drives) or directly connected to it. This setup eliminates network
from the storage path and may provide you better I/O performance in the
system. As the downside, you’d lose the flexibility of external storage,
where you can add additional space and perform maintenance on the fly,
transparently to the server.

Every storage subsystem has a “tipping point” after which the latency of
I/O requests will start to grow exponentially with increase in throughput
and IOPS (I/O operations per second). For example, you may get a 1-
millisecond response with an IOPS workload of 1,000 and a 3-millisecond
response with an IOPS workload of 50,000. However, you might cross the
tipping point at 100,000 IOPS and start to get double-digit or even triple-
digit latency.

Every component in the stack will have its own tipping point. For example,
low queue depth in the HBA adapter may lead to queueing on the controller
level as the number of I/O requests increases. In this case SQL Server will
suffer from high latency and poor I/O performance; however, all SAN
metrics will be perfectly healthy, with no latency at all.

You can use the DiskSpd utility to test storage subsystem performance. That
utility emulates SQL Server’s workload in the system. You can download it
from GitHub.

As I’ve noted, you’ll need to look at all storage subsystem components
when you troubleshoot bad I/0O performance. Nevertheless, the place to start
is analyzing overall storage latency and the number of data SQL Server
reads and writes. You can do this by looking at sys.dm_io virtual file stats
view.

sys.dm_io_virtual_file_stats view

www.datasense.ir

https://aka.ms/diskspd
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-io-virtual-file-stats-transact-sql

The sys.dm 1o virtual file stats view is the most important tool in SQL
Server 1/0 performance troubleshooting. This view provides 1/O statistics
by database file, including number of I/O operations, amount of data read
and written, and information about stalls, or time for I/O requests to
complete. (I use the terms latency and stalls interchangeably throughout this
book.)

The data in this view is cumulative and is calculated from the time of the
SQL Server restart. Take two snapshots of the data and calculate the delta
between them (Listing 3-1 shows the code to do that). This code filters out
database files with low /O activity, since their metrics are usually skewed
and not very useful.

Example 3-1. Using the sys.dm io virtual file stats view

CREATE TABLE #Snapshot
(

database_id SMALLINT NOT NULL,
file_id SMALLINT NOT NULL,
num of reads BIGINT NOT NULL,

num of bytes read BIGINT NOT NULL,

io stall read ms BIGINT NOT NULL,

num of writes BIGINT NOT NULL,

num of bytes written BIGINT NOT NULL,
io stall write ms BIGINT NOT NULL

) ;

INSERT INTO
#Snapshot (database id, file id,num of reads,num of bytes read

1o stall read ms,num of writes,num of bytes written,io stall write
_ms)
SELECT database id,file id,num of reads,num of bytes read

1o stall read ms,num of writes,num of bytes written,io stall write
ms

FROM sys.dm io virtual file stats (NULL,NULL)
OPTION (RECOMPILE) ;

-— Set test interval (1 minute). Use larger intervals in production
WAITFOR DELAY '0O0:01:00.000";

;WITH Stats(db _id, file id, Reads, ReadBytes, Writes
,WrittenBytes, ReadStall, WriteStall)

www.datasense.ir

as

SELECT
s.database id, s.file id
;fs.num of reads - s.num of reads
fs.num of bytes read - s.num of bytes read
fs.num of writes - s.num of writes
, fs.num of bytes written - s.num of bytes written
yf£s.i0 stall read ms - s.io stall read ms
yfs.io stall write ms - s.io stall write ms

FROM

#Snapshot s JOIN
sys.dm io virtual file stats (NULL, NULL) fs ON
s.database id = fs.database id and
s.file id = fs.file id
)

SELECT
s.db _id AS [DB ID], d.name AS [Database]
ymf.name AS [File Name], mf.physical name AS [File Path]
ymf.type desc AS [Type], s.Reads
, CONVERT (DECIMAL (12, 3), s.ReadBytes / 1048576.) AS [Read
MB]

, CONVERT (DECIMAL (12,3), s.WrittenBytes / 1048576.) AS
[Written MB]
,S.Writes, s.Reads + s.Writes AS [IO Count]
, CONVERT (DECIMAL (5,2),100.0 * s.ReadBytes /
(s.ReadBytes + s.WrittenBytes)) AS [Read %]
, CONVERT (DECIMAL (5,2),100.0 * s.WrittenBytes /
(s.ReadBytes + s.WrittenBytes)) AS [Write

o
s

;S.ReadStall AS [Read Stall]
,S.WriteStall AS [Write Stall]
, CASE WHEN s.Reads = 0
THEN 0.000
ELSE CONVERT (DECIMAL(12,3),1.0 * s.ReadStall /
s.Reads)
END AS [Avg Read Stall]
,CASE WHEN s.Writes = 0
THEN 0.000
ELSE CONVERT (DECIMAL(12,3),1.0 * s.WriteStall /
s.Writes)
END AS [Avg Write Stall]
FROM
Stats s JOIN sys.master files mf WITH (NOLOCK) ON
s.db id = mf.database id and
s.file id = mf.file id
JOIN sys.databases d WITH (NOLOCK) ON
s.db id = d.database id

www.datasense.ir

WHERE -- Only display files with more than 20MB throughput
(s.ReadBytes + s.WrittenBytes) > 20 * 1048576
ORDER BY
s.db _id, s.file id
OPTION (RECOMPILE) ;

Figure 3-4 shows the output from the view.

www.datasense.ir

1@

11

12

DB ID Database File Name

12

11

12

tempdb
tempdb
tempdb
tempdb
tempdb
tempdb
tempdb

tempdb

6@
1311
554
582
589
bids
574
Ll
7627
31166
5531
38756

File Path
tempdey T4 50104,
templog T4 50104,
temp T4 50104,
temp3 T4 50104,
temnpd T4 50104,
temps IR
temph IR
temp? IR

43,73

.08

43,82

43,77

43,67

43,83

43,85

43,82

1.75

2. 0a

19,75

11.33

50,4

10, e

50.18

50.43

50,33

5.1V

50,35

50,18

38,45

10, e

82,25

Ba. 67

285

@

155

286

286

225

214

205

b

1394

2252

Type Reads

ROW3
L0a

ROW3
ROW5
ROW5
ROWS
ROWS
ROWS
ROWS
L0

ROWS
ROWS

322
11591
308
322
323
343
308
299
6847
165944
3806
29908

279
4
278
232
235
37
287
284
7

@
1111
2505

I0 Count Read % Write ¥ Read Stall Write 5tall

www.datasense.ir

Read ME

17.375
a. 2ad
17,086
17.836
18.831
18.617
17. 664
17.625
1,578
@, daa
8.453

44,22

fug Read 5tall fug Write Stall

@735

@, daa

@ 7al

@.7a5

@ 658

@733

@ 746

@732

@ 789

@, daa

1,785

@859

Written

17,563
76,727
17.211
18,008
18,273
18,742
17.514
17.75@
Bl 718
142,578
38,422

345,977

HE Writes

281
1311
276
298
294
30l
287
21
7551
31166
4428
37251

1,146
@ 908
1,116
1.11@
1,233
1.14@
1273
1,253
@ 9av
@ 544
@861

@ 5a3

Figure 3-4. Sample output from sys.dm_io vitual file stats

The goal is to keep stalls/latency metrics as low as possible. It is impossible
to define thresholds that can be applied to all systems, but my rule of thumb
is not to exceed 1 to 2-millisecond write stalls for transaction logs and 5 to
7- millisecond read and write stalls for data files when network storage is
used. The latency should be even lower, in the sub-millisecond range, when
you are using mode modern direct-attached drives.

Next, analyze throughput in the system. High stalls with low throughput
usually indicate performance issues outside of SQL Server. Don’t forget to
look at throughput across all files that share the same drive or controller.
High throughput in some files may impact the metrics in others that share
the same resource.

There is usually a correlation between throughput and stalls — the more data
you are reading and writing, the higher latency you’ll have. This correlation
is usually linear until you reach the tipping point, after which latency
increases very quickly.

A large amount of reads and read stalls in the data files is often
accompanied by a significant percent of PAGEIOLATCH waits and a low
Page Life Expectancy performance counter value. This indicates that a large
amount of data is constantly being read from disk. You need to understand
why that is happening. In most cases, it’s due to nonoptimized queries that
perform large scans reading data from disk. We will talk about how to
detect those queries in the next chapter.

Don’t discount the possibility, though, that the server is underprovisioned
and doesn’t have enough memory to accommodate an active dataset. That is
also entirely possible. In either case, adding extra memory may be a
completely acceptable solution that will reduce I/O load and improve
performance of the system. It is, obviously, not the best solution, but in
many cases it’s easier and cheaper to use hardware to solve the problem.

In users’ databases, large amount of writes and write stalls in data files
often indicate inefficient checkpoint configuration. You may get some

www.datasense.ir

improvements by tuning the checkpoint configuration, as I will show later
in the chapter. In the longer term, you may need to analyze if it is possible
to reduce the number of data pages SQL Server writes to disk. Some ways
to do this include removing unnecessary indexes; reducing page splits by
changing FILLFACTOR and tuning the index maintenance strategy;
decreasing the number of data pages by implementing data compression;
and, potentially, refactoring database schema and applications.

When you see large throughput and stalls in tempdb, identify what causes
them. The three most common causes are version store activity, massive
tempdb spills, and excessive usage of temporary objects. We will talk about
these in Chapter 9.

Finally, you can also get an idea of I/O latency by analyzing resource wait
time in PAGEIOLATCH and other I/O-related waits. This won’t give you
detailed information on a per-file basis, but it may be a good metric when
you look at systemwide 1/O performance.

Performance Counters and OS Metrics

The sys.dm_10_virtual file stats view provides useful and detailed
information and points you in the right direction for further I/O
troubleshooting, but it has one limitation: it averages data over the sampling
interval.

This is completely acceptable when I/O latency is low. However, if latency
numbers are high, you’ll want to determine if performance is generally slow
or if the numbers have been skewed by some bursts in activity. You can do
this by looking at the performance counters correlating SQL Server and
disk metrics.

The troubleshooting process will vary slightly between Windows and
Linux. In Windows, the simplest way to analyze the metrics is using the
well-known PerfMon (Performance Monitor) utility. You can look at the
SQL Server and I/0O performance counters together and correlate data from
them.

www.datasense.ir

N s 9 < o

~

.~ 0

R U~ 8w U

AL v 890 x S 3 = 0o

www.datasense.ir

“ Y NI = 0N

Performance
Object

Physical Disk

Performance
Counters

Avg Disk Queue

Length

Avg

Disk Read Queue

Length

Avg

Disk Write Queue

Length

Current Disk
Queue Length

Avg Disk
sec/Transfer

Disk sec/Read

Disk sec/Write

Avg

Avg

Disk Transfers/sec

Reads/sec

Writes/sec

Disk

Disk

Description

Provides the average number of I/O requests (total, read,
and write, respectively) queued during the sampling
interval. Those numbers should be as low as possible.
Spikes indicate that I/O requests are being queued at the
OS level.

Gives you the size of the I/O request queue when the
metric was collected.

Indicates average latency for disk operations during the
sampling interval. These numbers are usually similar to
latency/stall metrics from the

sys.dm io virtual file stats view when sampled over
the same time period. However, because you typically
measure sys.dm_io virtual file stats over larger
intervals, these counters will show you if I/O stalls were
always high or if data has been affected by latency
spikes.

Displays the number of I/O operations and throughput at
the time of the reading. Similar to latency counters, you
can use them to analyze the uniformity of the disk
workload.

www.datasense.ir

SQL Server: Buffer
Manager

SQL Server:
Databases

SQL Server: SQL
Statistics

SQL Server:
Databases

Disk
Bytes/sec

Disk
Read Bytes/sec

Disk
Write Bytes/sec
Avg Disk
Bytes/Transfer

Avg
Disk Bytes/Read

Avg
Disk Bytes/Write

Checkpoint
pages/sec

Background writer
pages/sec

Lazy writer/sec

Page reads/sec

Page
writes/sec
Readahead
pages/sec
Log Bytes
Flushed/sec

Log
Flush Write Time
(ms)

Log
Flushes/sec
Batch Requests/sec
Transactions/sec

Shows the average size of I/O requests, which can help
you understand I/O patterns in the system.

Shows the number of dirty pages written by the
checkpoint process.

Provides number of pages written by lazy writer process

Display the number of physical reads and writes

Shows the number of pages read by read-ahead process.

Provide you the data about throughput, latency and
number of write requests for transaction log writes. Use
those counters to understand uniformity of log
generation when you troubleshoot high log write latency

While these two counters are not I/O-related, they can be
used to analyze spikes in system workload that may lead
to bursts in I/O activity.

www.datasense.ir

Usually, I start by looking at Avg Disk sec/Read and Avg Disk sec/Write
latency counters, along with Avg Disk Queue Length. If I see any spikes in
their values, I add SQL Server—specific counters to identify what processes
may be leading to the bursts in activity.

Figure 3-5 illustrates one such example. You can see the correlation
between Checkpoint pages/sec and high Avg Disk sec/Write and Avg Disk
Queue Length values. This leads to the simple conclusion that the I/O
subsystem cannot keep up with bursts of writes from the checkpoint
process.

www.datasense.ir

TELUT

Ll

fl-

fl-

Uiy

10

0 : _ﬁl-_ru"“ﬁl | J\&vw’

31536PM 101 4 1 1 B 1 LA PM
Last D0 Average LT0TT M 0000 Mo H477389 Duration 10

Sow Colr Sl Counter nsfance Paent Qb Computer

Voo —— 00 g DikOueelength Tot Physicellis

v D0 Checkpomt pagesher = 0L enBuffer Mamager

Voo —— M Dik Wt Tl - Physicellis

www.datasense.ir

Figure 3-5. Checkpoint and disk queueing

Pay attention to other applications installed on the server — it is possible that
they are responsible for I/O activity bursts or other issues.

Linux doesn’t offer the standard PerfMon utility; however, there are plenty
of free and commercial monitoring tools available. You can also use tools
like 10stat, dstat, and iotop, which are included in major Linux distributions.
They provide general disk performance metrics on a per-process or system
level.

On the SQL Server side, you can access performance counters through
sys.dm _os performance counters view. Listing 3-2 shows you how to do
that.

Example 3-2. Using sys.dm_os performance counters view

CREATE TABLE #PerfCntrs
(
collected time DATETIMEZ (7) NOT NULL DEFAULT SYSDATETIME (),
object name SYSNAME NOT NULL,
counter name SYSNAME NOT NULL,
instance name SYSNAME NOT NULL,
cntr value BIGINT NOT NULL,
PRIMARY KEY (object name, counter name, instance name)

) ;

;WITH Counters (obj name, ctr name)

AS
(

SELECT C.obj name, C.ctr name

FROM

(

VALUES
('SQLServer:Buffer Manager',6 'Checkpoint

pages/sec')

, ('SQLServer:Buffer Manager', 'Background
writer pages/sec')
;, ('SQLServer:Buffer Manager',6 'Lazy

writes/sec')

;, ('SQLServer:Buffer Manager', 'Page
reads/sec')

;, ('"SQLServer:Buffer Manager', 'Page
writes/sec')

www.datasense.ir

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-performance-counters-transact-sql

, ("SQLServer:
pages/sec')
, ('SQLServer:

For all DBs
, ("SQLServer:
For all DBs
, ('SQLServer:
For all DBs
, ("SQLServer:

Flushed/sec')

Time (ms)"')

For all DBs
, ('SQLServer:
Requests/sec')
) C(obj name, ctr name)
)
INSERT INTO
#PerfCntrs (object name,counter name,i
SELECT
pc.object name, pc.co
pc.cntr value
FROM
sys.dm os performance
JOIN Counters c ON
pc.counter na
c.0bj name;

pc.object name
WAITFOR DELAY '00:00:01.000";

;WITH Counters (obj name, ctr name)

AS
(

SELECT C.obj name, C.ctr name

FROM

(

VALUES
('SQLServer:B

pages/sec')

('SQLServer:

14

writer pages/sec')

, ('SQLServer:
writes/sec')

, ("SQLServer:
reads/sec')

, ('SQLServer:
writes/sec')

, ("SQLServer:
pages/sec')

('SQLServer:

14

For all DBs

Buffer Manager', 'Readahead

Databases', 'Log Flushes/sec')
Databases', 'Log Bytes
Databases', 'Log Flush Write
Databases', 'Transactions/sec')

SQL Statistics', 'Batch

nstance name,cntr value)

unter name, pc.instance_name,

_counters pc WITH (NOLOCK)

me

c.ctr name AND

uffer Manager', 'Checkpoint
Buffer Manager', 'Background
Buffer Manager',6 'Lazy
Buffer Manager', 'Page
Buffer Manager', 'Page
Buffer Manager', 'Readahead

Databases', 'Log Flushes/sec')

www.datasense.ir

;, ('SQLServer:Databases', 'Log Bytes
Flushed/sec') -- For all DBs
, ('SQLServer:Databases', 'Log Flush Write
Time (ms)') -- For all DBs
, ('"SQLServer:Databases', 'Transactions/sec')
-—- For all DBs
, ('SQLServer:SQL Statistics', 'Batch
Requests/sec')
) C(obj name, ctr name)
)
SELECT
pc.object name, pc.counter name, pc.instance name
,CASE pc.cntr type
WHEN 272696576 THEN
(pc.cntr value - h.cntr value) * 1000 /

DATEDIFF (MILLISECOND, h.collected time, SYSDATETIME ())
WHEN 65792 THEN
pc.cntr value
ELSE NULL
END as cntr value
FROM
sys.dm os performance counters pc WITH (NOLOCK) JOIN
Counters c ON
pc.counter name = c.ctr name AND pc.object name =
Cc.obj name
JOIN #PerfCntrs h ON
pc.object name = h.object name AND
pc.counter name = h.counter name AND
pc.instance name = h.instance name
ORDER BY
pc.object name, pc.counter name, pc.instance name
OPTION (RECOMPILE) ;

You can also bring sys.dm_io_virtual file stats view to the analysis,
sampling its data and performance counters together every second. The
approach is the same one we just discussed — you’ll look at the correlation
between disk latency and activity and evaluate the general performance of
the I/O subsystem, identifying tipping points in the load.

Virtualization, HBA, and Storage Layers

There are several layers in the storage stack you may need to analyze in
addition to OS. They include virtualization, HBA/SCSI controller

www.datasense.ir

configuration, and the storage array itself.

I recommend working together with infrastructure and storage engineers
during troubleshooting.

SQL Server mostly operates in shared environments. It shares storage and
network infrastructure with other clients, and when virtualized, it runs on
the same physical host with other VMs. As I said earlier in this book, when
virtualization is being used, be sure to validate that the host is not
overcommitted, which could lead to all sorts of performance issues.

Unless you have a very simple SQL Server setup that uses local storage, /0
requests will be serialized and sent over network. There are two typical
problems here: insufficient queue depth and noisy neighbors.

Insufficient queue depth

The first is insufficient queue depth somewhere in the 1/0 path.
Unfortunately, the default query depth may not be enough for a highly
demanding I/O workload. You’ll need to check and potentially increase
it in the datastore, vSCSI controller, and HBA adapter settings. The
typical sign of insufficient queue depth is low latency on the storage
combined with much higher latency in VM and/or OS, with disk

queueing present.

Noisy neighbors

The second problem is noisy neighbors. Multiple I/O intensive VMs
running on the same host may affect each other. Similarly, multiple
high-throughput servers sharing the same network and storage may
overload them. Unfortunately, troubleshooting noisy neighbor problem
is never easy and you need to analyze multiple components in the

infrastructure to detect it.

www.datasense.ir

A word of caution — storage arrays can handle a limitednumber of
outstanding requests. Increasing queue depth on a busy server could
increase the number of outstanding requests on the storage. You might shift
the bottleneck from the server to the storage layer, especially if the storage
serves requests from many busy systems.

The virtualization host and storage both expose throughput, IOPS, and
latency metrics for analysis. On virtualization layers, the metrics may vary
based on technology. For example, in Hyper-V you can use regular disk
performance counters on the host. In VMWare, you can get the data from
ESXTOP utility. In either case, the troubleshooting approach is very similar
to what we have already discussed. Look at the available metrics, correlate
data from them, and detect the bottlenecks in the I/O path.

Finally, check the storage configuration. Storage vendors usually publish
best practices for SQL Server workloads: they are a good starting point. Pay
attention to the allocation unit size’s alignment with the raid stripe size and
partition offset, though.

For example, a 1024 MB partition offset, 4 KB disk block, 64 KB allocation
unit, and 128 KB raid stripes are perfectly aligned, with each I/O request
served by a single disk. On the other hand, 96 KB raid stripes will spread 64
KB allocation units across two disks, which leads to extra I/O requests and
can seriously impact performance.

Again, it 1s always beneficial to work together with infrastructure and
storage engineers. They are the subject matter experts and may help you to
find the root cause of the problem faster than when you are working alone.

Finally, the best approach to get predictable performance in critical systems
is to use a dedicated environment. Run SQL Server on dedicated hardware
with direct-attached storage (DAS) to get the best performance possible.

Checkpoint Tuning

As we all know, SQL Server uses write-ahead logging. Transactions are
considered to be committed only after the log records are hardened in the

www.datasense.ir

transaction logs. SQL Server does not need to save dirty data pages to disk
at the same time — it can reapply the changes by replaying log records if
needed.

The checkpoint process saves data pages into the data files. The main goal
of checkpoint is reducing recovery time in event of an SQL crash or
failover: the fewer changes need to be replayed, the faster recovery will be.
The maximum desired recovery time is controlled at either the server level
or the database level. By default, both of them are 60 seconds.

NOTE

You should not consider the recovery target to be a hard value. In many cases, the
database will recover much faster than that. It is also possible for bursts of activity and
long running transactions to prolong recovery beyond the target time.

There are four different types of checkpoints:

Internal checkpoints
Internal checkpoints occur during some SQL Server operations, such as
starting database backup or creating a database snapshot.

Manual checkpoints
Manual checkpoint occur manually, as the name indicates, when users
trigger them with the CHECKPOINT command.

Automatic checkpoint

Historically, SQL Server used automatic checkpoints, with the recovery
interval controlled at the server level. The checkpoint process wakes up
once or few times each recovery interval and flushes dirty data pages to
disk. Unfortunately, this approach can lead to bursts of data writes,

which can be problematic in busy systems.

www.datasense.ir

Indirect checkpoint

Starting with SQL Server 2012, you have another option: indirect
checkpoint. With this method, SQL Server tries to balance I/O load by
executing checkpoints much more frequently — in some cases, even
continuously. This helps to mitigate bursts of data writes, making the
I/O load much more balanced. Use it instead of automatic checkpoint
whenever possible. Indirect checkpoint is controlled on a per-database
basis and enabled by default in databases created in SQL Server 2016
and above. However, SQL Server does not enable indirect checkpoint
automatically when you upgrade an SQL Server instance, or in SQL
Server 2012 and 2014. You can do it manually by setting up a recovery
target at the database level with the ALTER DATABASE SET
TARGET RECOVERY TIME command.

Let me show you an example from one system I worked with. The sample
of data from sys.dm io virtual file stats view over 1 minute had very high
write latency for the data files. However, the smaller samples (1 to 3
seconds) rarely showed any activity at all.

Figure 3-6 shows the data, with the 1-minute sample at the top and the 1-
second sample at the bottom.

www.datasense.ir

File Path Reads Read HE Hritten MB Hrites

1 Bk NDF J098 9LeE7 o 14ed.727 o 154504
2 Indexes NDF - 47395 214,140 - 9648.797 1113962
I0 Count Read Stall Write 5tall Avg Read Stall Avg Write Stall

141662 11708 B287158 3,778

1161298 466554 4303093 BT

File Path Reads Read MB HWritten HB Hrites
1 _BAK.NDF 14 2, 6d1 @, 02@)
. _Indexes, NDF 552 27,399 @, 02@)

I0 Count Read Stall Write Stall Awg Read Stall Avg HWrite Stall

14 14 1,008 2. 2oa 2. 0oa

552 471 2. 00d 0,853 2. 0oa

Figure 3-6. Sample sys.dm_io_virtual file stats with automatic checkpoint

This behavior led me to believe that the issue was related to checkpoint. I
confirmed this hypothesis by looking at the Checkpoint pages/sec, Disk
Writes/sec, and Avg Disk Queue Length performance counters. You can
clearly see that burst of disk writes from the checkpoint process in Figure 3-
5 earlier in the chapter, which shows the screenshot from PerfMon.

www.datasense.ir

Although this instance ran SQL Server 2016, it used automatic checkpoint,
because all databases had been upgraded from the earlier version of SQL
Server. Enabling indirect checkpoint in the system immediately changed the
I/O pattern, making it much more balanced.

You can see the performance counters in Figure 3-7. Notice that with
indirect checkpoint, you should use Background writer pages/sec instead of
the Checkpoint pages/sec counter.

www.datasense.ir

IR eX SEEQIN)

100
A0-
fl-
iy
-

! AANAAAAAANAN
OP0GAM QARISAM OATISAM TIBAM OAPATAM BAPISAM OABOAM BISAM B4ROIAM
Lt 0000 Aerage 1080538 Minirnurn 0000 Maimum 565,008 Duration {14
Show Color el Counter nstance Parent Object Campter
oo —— 0 A DikQueelength Tl - Physicallisk
Vo —— 00 Disk Wihesfsec Tl e PhysicalDisk
lr'; Backqround wirter paggs.. - ML

www.datasense.ir

Figure 3-7. Indirect checkpoint performance counters

Figure 3-8 shows the output from a 1-minute sample in the
sys.dm 1o virtual file stats view. As you can see, latency went back to
normal.

File Path Reads Read MB HWritten B Writes

1 NADatazARD_BAK. NDF 2987 89,120 136,542 135039

2 Ni\Data3\AAD_Indexes NDF 48212 214@.134 ~ 18944,122 - 1182783
I0 Count Read Stall Hrite Stall Avg Read Stall Avg Write Stall

138026 3065 264675 1,226 1,960

1239935 66195 2250405 1,373 1,524

Figure 3-8. Sample sys.dm_io_virtual file stats with indirect checkpoint

Indirect checkpoints do not completely eliminate I/O bursts. You can still
have them, especially if the system has some spikes in data modifications.
However, they are less frequent than with automatic checkpoints.

You may also need to tune the recovery target to get the most balanced 1/0
load. In the case above, I got the best results with a 90-second target. Of
course, high values may increase recovery time in the system.

1/0 Waits

SQL Server uses several different wait types related to I/O operations. It is
very common to see all of them present when the disk subsystem is not fast
enough. Let’s look at five of the most common:
ASYNC 10 COMPLETION, I0_ COMPLETION, WRITELOG,

WRITE COMPLETION, and PAGEIOLATCH.

www.datasense.ir

ASYNC_|IO_COMPLETION waits

This wait type occurs when SQL Server waits for asynchronous I/0O
operations (read or write) for non-buffer pool pages to complete. Examples
include:

e Internal checkpoint when you start database backup or run DBCC
CHECKDB

e Reading GAM pages from data files

e Reading data pages from database during database backup.
(Unfortunately, this tends to skew the average wait time, making it
harder to analyze.)

When I see significant presence of both ASYNC 10 COMPLETION and
PAGEIOLATCH waits in the system, I perform general I/O
troubleshooting. If PAGEIOLATCH waits are not present, I look at how
often ASYNC 10 _COMPLETION occurs. I may ignore that wait if its
percentage is not very significant and disk latency is low.

IO_COMPLETION waits

The IO COMPLETION wait type occurs during synchronous reads and
writes in data files and during some read operations in transaction log. A
few examples:

e Reading allocation map pages from the database
e Reading the transaction log during database recovery
e Writing data to tempdb during sort spills

When you see significant percentages of this wait in the system, perform
general disk-performance troubleshooting. Pay specific attention to tempdb
latency and throughput; in my experience, bad tempdb performance is the
most common reason for this wait. We will talk more about tempdb
troubleshooting in Chapter 9.

www.datasense.ir

WRITELOG waits

As you can guess by the name, this wait occurs when SQL Server writes log
records to the transaction log. It is normal to see this wait in any system;
however, a large percentage may indicate a transaction-log bottleneck.

Look at average wait time and transaction log write latency in the
sys.dm 1o virtual file stats view during troubleshooting. High numbers
are impactful and may affect throughput in the system.

In addition to optimizing disk subsystem throughput, there are several other
things you can do to reduce that wait. We will discuss them in Chapter 11.

WRITE_COMPLETION waits

This wait occurs during synchronous write operations in database and log
files. In my experience, it is most common with database snapshots.

SQL Server maintains snapshot databases by persisting versions of data
pages that existed at time the snapshot was created. At checkpoints after the
snapshot was created, SQL Server reads old copies of data pages from data
files and saves them into the snapshot before saving dirty pages to disk.
This can significantly increase the amount of I/O in the system.

When you see this wait in the system, check if there are database snapshots
present. Remember that some internal processes, like DBCC CHECKDB,
also create internal database snapshots.

When snapshots are present and their usage is legitimate, you may need to
analyze how to improve disk performance to support them. In other cases,
you may need to remove them from the system if storage cannot keep up.

PAGEIOLATCH waits

As you already know, PAGEIOLATCH waits occur when SQL Server reads
data pages from disk. Those waits are very common and are present in any
system. Technically, there are six such waits, but only three are typically
present in the system:

www.datasense.ir

PAGEIOLATCH EX

Occurs when the worker wants to update the data page and is waiting

for the page to be read from disk to the buffer pool.

PAGEIOLATCH SH

Occurs when the worker wants to read the data page and is waiting for

the page to be read from disk to the buffer pool.

PAGEIOLATCH UP

Occurs when the worker wants to update a system page (for example,
the allocation map) and is waiting for the page to be read from disk to

the buffer pool.

Excessive amounts of PAGEIOLATCH waits show that SQL Server is
constantly reading data from disk. This usually occurs under two
conditions. The first is an underprovisioned SQL Server: when the active
data does not fit into the memory. Second, and more often, it indicates the
presence of nonoptimized queries that scan unnecessary data, flushing the
contents of the buffer pool.

You can cross-check the data by looking at the Page Life Expectancy
performance counter, which shows how long data pages stay in the buffer
pool. As a baseline, you can generally use the value of 300 seconds per 4
GB of buffer pool memory: for example, 7,500 seconds on the server with
100 GB buffer pool.

You can see the value of Page Life Expectancy in the PerfMon utility or
with the sys.dm os performance counters view, as shown in Listing 3-3. It
also returns values for individual NUMA nodes in the system.

Example 3-3. Getting Page Life Expectancy in the system

SELECT object name, counter name, instance name, cntr value as

www.datasense.ir

[PLE (sec)]
FROM sys.dm os performance counters WITH (NOLOCK)
WHERE counter name = 'Page life expectancy'
OPTION (RECOMPILE) ;

A large percentage of PAGEIOLATCH waits always requires
troubleshooting. While it does not always introduce customer-facing
problems, especially with low-latency flash-based disk arrays, the data
growth may push the disk subsystem over the limit, which can become a
problem that quickly affects the entire system.

You can reduce the impact of PAGEIOLATCH waits by upgrading the disk
subsystem or adding more memory to the server. However, the best
approach is reducing the amount of data to read from disk by detecting and
optimizing inefficient queries. We’ll look at how to detect those queries in
the next chapter.

Summary

SQL Server uses cooperative scheduling and, in the majority of cases,
asynchronous I/O when it reads and writes data. By default, each scheduler
has its own I/O queue and handles 1/O in the system.

The sys.dm 1o virtual file stats view provides I/O throughput and latency
metrics per database file. In a properly tuned system, the latency of
transaction log writes should not exceed 1 to 2 milliseconds, and the latency
of reads and writes to data files should not exceed 5 to 7 milliseconds with
network-based storage and should be even lower with DAS.

Look at the entire I/O stack when troubleshooting bad I/O performance.
The problem may be anywhere — in the OS, virtualization, network path, or
storage layers.

In many cases, high 1/O latency is introduced by bursts in I/O activity.
Analyze and tune the checkpoint process — it is one of the most common
offenders in busy systems.

www.datasense.ir

In many cases, reducing disk activity will help you improve disk latency
and system performance. Query optimization is one of the best ways to
achieve that. We will look at how to detect non-optimized queries in the
system in the next chapter.

Troubleshooting Checklist

Troubleshoot the following:

Analyze disk subsystem latency with the
sys.dm 1o virtual file stats view

Check if high latency is caused by bursts in I/O activity by
analyzing SQL Server and OS performance counters.

Review I/0O metrics at the VM and storage levels, paying attention
to noisy neighbors in your setup.

Check disk queue depth settings in the 1/O stack.

Troubleshoot SQL Server checkpoint performance and switch to
indirect checkpoints.

Troubleshoot log performance if you see significant WRITELOG
waits (see Chapter 11).

Troubleshoot tempdb performance if you see significant
IO COMPLETION waits and high tempdb usage and latency (see
Chapter 9).

Detect and optimize inefficient queries if you see high
PAGEIOLATCH waits in the system.

www.datasense.ir

Chapter 4. Detecting Inefficient
Queries

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be Chapter 4 of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

Inefficient queries exist in every system. They impact performance in many
ways, most notably by increasing I/O load, CPU usage and blocking in the
system. It 1s essential to detect and optimize them. We’ll start with detection
in this chapter, then move on to optimization strategies in subsequent
chapters.

This chapter discusses inefficient queries and their potential impact on your
system and provides guidelines for detecting them, starting with an
approach that uses plan cache-based execution statistics. Next, I will talk
about Extended Events and SQL Traces, and then cover Query Store. I’1l
wrap up the chapter by sharing a few thoughts on third-party monitoring
tools.

The Impact of Inefficient Queries

www.datasense.ir

During my career as a database engineer, I have yet to see a system that
wouldn’t benefit from query optimization. I’m sure they exist — after all, no
one calls me in to look at perfectly healthy systems. Nevertheless, those are
few and far between, and there are always opportunities to improve and
optimize.

Not every company prioritizes query optimization, though. It’s a time-
consuming and tedious process, and in many cases it’s cheaper, given the
benefits of speeding up development and time-to-market, to throw hardware
at the problem than to invest hours in performance tuning.

At some point, however, that approach leads to scalability issues. Poorly
optimized queries impact systems from many angles, but perhaps the most
obvious is disk performance. If the I/O subsystem cannot keep up with the
load of large scans, the performance of your entire system will suffer.

You can mask this problem, to a degree, by adding more memory to the
server. This increases the size of the buffer pool and allows SQL Server to
cache more data, reducing physical I/O. As amount of data in the system
grows over time, however, this approach may become impractical or even
impossible—especially in non-Enterprise editions of SQL Server that
restrict the maximum buffer pool size.

Another effect to watch for is that nonoptimized queries burn CPU on the
servers. The more data you process, the more CPU resources you consume.
A server might spend just a few microseconds per logical read and in-
memory data-page scan, but that quickly adds up as the number of reads
increases.

Again, you can mask this by adding more CPUs to the server. (Note,
however, that you will need to pay for additional licenses. In non-Enterprise
editions, expect a cap on the number of CPUs.) Moreover, adding CPUs
may not always solve the problem — nonoptimized queries will still
contribute to blocking in the system. While there are ways to reduce
blocking without performing query tuning, this can change system behavior
and has performance implications.

www.datasense.ir

The bottom line 1s: When you troubleshoot a system, always analyze
whether queries in the system are poorly optimized. Once you’ve done that,
estimate the impact of those inefficient queries.

While query optimization always benefits a system, it is not always simple,
nor does it always provide the best ROI for your efforts. More often than
not, you will at least need to tune some queries.

To put things in perspective: I perform query tuning when I see high disk
throughput, blocking, or high CPU load in the system. However, I may
initially focus my efforts elsewhere if data is cached in the buffer pool and
the CPU load 1s acceptable. I have to be careful and think about data growth,
though — it is possible that active data will one day outgrow the buffer pool,
which could lead to sudden and serious performance issues.

Fortunately, query optimization does not require an all-or-nothing approach!
You can achieve dramatic performance improvements by optimizing just a
handful of frequently executed queries. Let’s look at a few methods of how
we can detect them.

Plan-Cache-Based Execution Statistics

In most cases, SQL Server caches and reuses execution plans for queries.
For each plan in the cache, it also maintains execution statistics, including
the number of times the query ran, cumulative CPU time, and I/O load. You
can use this information to quickly pinpoint the most resource-intensive
queries for optimization. (We will discuss plan caching in more details in
Chapter 6.)

Analyzing plan cache-based execution statistics i1s not the most
comprehensive detection technique; it has quite a few limitations.
Nevertheless, it is very easy to use and, in many cases, good enough. It
works in all versions of SQL Server and it is always present in the system.
You don’t need to set up any additional monitoring to collect the data.

www.datasense.ir

NOTE

The code calls the sys.dm_exec query plan function for each cached plan in the system.
This is a CPU-intensive operation, so remove it if your server is CPU-bound. You may
also need to comment some of the columns in the statement, depending on the version
and patching level of your SQL Server instance.

You can get execution statistics using the sys.dm_exec_query_stats view (as
shown in Listing 4-1). The query there is a bit simplistic, but it demonstrates
the view in action and shows you the list of metrics exposed in the view. We
will use it to build a more sophisticated version of the code later in the
chapter.

Example 4-1. Using the sys.dm_exec query stats view
SELECT TOP 50

gs.creation time AS [Cached Time]

,ds.last execution time AS [Last Exec Time]

, SUBSTRING (gt .text, (gs.statement start offset/2)+1,
((

CASE gs.statement end offset
WHEN -1 THEN DATALENGTH (gt.text)
ELSE gs.statement end offset
END - gs.statement start offset)/2)+1) AS SQL
sgp.query plan AS [Query Plan]
;gs.execution count AS [Exec Cnt]
, CONVERT (DECIMAL (10, 5),
IIF (datediff (second,gs.creation time,
gs.last execution time) = 0,
NULL,
1.0 * gs.execution count /
datediff (second, gs.creation time,
gs.last execution time)
)
) AS [Exec Per Second]
, (gs.total logical reads + gs.total logical writes) /
gs.execution count AS [Avg IO]
, (gs.total worker time / gs.execution count / 1000)
AS [Avg CPU(ms)]
,gs.total logical reads AS [Total Reads]
,gs.last logical reads AS [Last Reads]
,gs.total logical writes AS [Total Writes]
;gs.last logical writes AS [Last Writes]
,gs.total worker time / 1000 AS [Total Worker Time]

www.datasense.ir

,ds.last worker time / 1000 AS [Last Worker Time]
,gs.total elapsed time / 1000 AS [Total Elapsed Time]
,ds.last elapsed time / 1000 AS [Last Elapsed Time]
,gs.total rows AS [Total Rows]
,gs.last rows AS [Last Rows]
,gs.total rows / gs.execution count AS [Avg Rows]
,ds.total physical reads AS [Total Physical Reads]
,gds.last physical reads AS [Last Physical Reads]
,ds.total physical reads / gs.execution count
AS [Avg Physical Reads]
rgs.total grant kb AS [Total Grant KB]
;ds.last grant kb AS [Last Grant KB]
, (gs.total grant kb / gs.execution count)
AS [Avg Grant KB]
;gs.total used grant kb AS [Total Used Grant KB]
,gs.last used grant kb AS [Last Used Grant KB]
, (gs.total used grant kb / gs.execution count)
AS [Avg Used Grant KB]
,gs.total ideal grant kb AS [Total Ideal Grant KB]
,gs.last ideal grant kb AS [Last Ideal Grant KB]
, (gs.total ideal grant kb / gs.execution count)
AS [Avg Ideal Grant KB]
;gs.total columnstore segment reads
AS [Total CSI Segments Read]
;gs.last columnstore segment reads
AS [Last CSI Segments Read]
, (gs.total columnstore segment reads / gs.execution count)
AS [AVG CSI Segments Read]
;gs.max _dop AS [Max DOP]
,gs.total spills AS [Total Spills]
,gs.last spills AS [Last Spills]
, (gs.total spills / gs.execution count) AS [Avg Spills]
FROM
sys.dm exec query stats gs WITH (NOLOCK)
CROSS APPLY sys.dm exec sqgl text(gs.sgl handle) gt
CROSS APPLY sys.dm exec query plan(gs.plan handle) gp
ORDER BY
[Avg I0] DESC
OPTION (RECOMPILE, MAXDOP 1);

You will likely sort data differently based on your tuning goals: by I/O when
you need to reduce disk load; by CPU on CPU-bound systems, and so on.

Figure 4-1 shows a partial output of the query from one of the servers. As
you can see, it is very easy to choose queries to optimize based on frequency
of query executions and resource consumption data in the output.

www.datasense.ir

l
!

Cached Tine

2021-01-12 15:30:5.613
2021-01-12 1he1%:36, 383
021-00-12 17,4308, 35
201-00-11 12:0: 00,530
2001-00-12 15:25:10,%40
2021-00-0 09:30:0.37
2021-0-12 11210, 743

Exec Per Sec, hug 10

0. 20187
0. 20189
0.08333
0. 00005
0. 20185
0. 8250

Lt

Figure 4-1. Fig 4-1 Partial output from sys.dm_exec_query_stats view

Last Exec Tine

201-00-12 18 110,270
2021-00-12 18:14:00.007
2021-00-12 174341, 087
201-00-12 18:11:04. 333
2021-00-12 18:15:42.060
2021-00-03 09302050

21-01-12 1R 101770
hg CPU(ns |

#T S

330347 36656
L9g8ldd] 18357
13916838 44738
180360 30899
BT 13T

17ls 3

Al

UPDATE L.
nerge bl
SELECT th.
PDATE b,
select * .
SELECT th.

seleft ¥,

Total Reats

Bh209778
302050027
19836720
§500847
201075412
B4310%9
T717%

www.datasense.ir

Query Plan

£5howPLankiL.,

£5houPLankiL.,

£5houPLankiL.,

£5houPLankiL.,

£5houPLankiL.,

£5houPLankiL.,

£5houPLankiL.,

Exec (nt

18
13

l

Last Reads Total Writes

36090448
2328968
19836720
13917200
1058484
B4910%9

T2717%

185825
266093
44721
182
504248
14628
10

The execution plans you get in the output do not include actual execution
metrics. In this respect, they are similar to estimated execution plans. You’ll
need to take this into consideration during optimization (we’ll talk more
about that in chapter 5).

There are several other important limitations to remember.

First and foremost, you won’t see any data for the queries that do not have
execution plans cached. You may miss some infrequently executed queries
with plans evicted from the cache. Usually, this is not a problem —
infrequently executed queries rarely need to be optimized at the beginning
of tuning.

There is another possibility, however. SQL Server won’t cache execution
plans if you are using statement-level recompile or executing stored
procedures with a RECOMPILE clause. You need to capture those queries
using Query Store or Extended Events, which we will discuss later in the
chapter.

The second problem is related to how long plans stay cached. This varies by
plan, which may skew the results when you sort data by tota/ metrics. For
example, a query with lower average CPU time may show a higher total
number of executions and CPU time than a query with higher average CPU
time, depending on the time when both plans were cached.

You can look at the creation_time and last execution_time columns, which
show the last time when plans were cached and executed, respectively. |
usually look at the data sorted based on both total and average metrics,
taking the frequency of executions into consideration.

The final problem is more complicated: it is possible to get multiple results
for the same or similar queries. This can happen with ad-hoc workloads,
with clients that have different SET settings in their sessions, when users run
the same queries with slightly different formatting, or in many other cases.

Fortunately, you can address that problem by using two columns,
query hash and query plan_hash, both exposed in the
sys.dm_exec_query_stats view. The same values in those columns would

www.datasense.ir

indicate similar queries and execution plans. You can use those columns to
aggregate data.

WARNING

The DBCC FREEPROCCACHE statement clears the plan cache to reduce the size of the
output in the demo. Do not run it on production servers!

Let me demonstrate with a simple example. Listing 4-2 runs three queries
and then examines the content of the plan cache. The first two are the same
—they just have different formatting. The third one is different.

Example 4-2. Query hash and query plan hash in action

DBCC FREEPROCCACHE -- Do not run in production!
GO
SELECT /*V1*/ TOP 1 object id FROM sys.objects WHERE object id = 1;
GO
SELECT /*V2*/ TOP 1 object id
FROM sys.objects
WHERE object id = 1;
GO
SELECT COUNT (*) FROM sys.objects
GO
SELECT
gs.query hash, gs.query plan hash, gs.sgl handle,
gs.plan handle,
SUBSTRING (gt.text, (gs.statement start offset/2)+1,
((
CASE gs.statement end offset
WHEN -1 THEN DATALENGTH (gt.text)
ELSE gs.statement end offset
END - qs.statement_start_offset)/2)+l
) as SQL
FROM
sys.dm exec query stats dgs
CROSS APPLY sys.dm exec sgl text(gs.sgl handle) gt
ORDER BY query hash
OPTION (MAXDOP 1, RECOMPILE) ;

You can see the results in Figure 4-2. There are three execution plans in the
output. The last two rows have the same query hash and query plan hash
and different sql_handle and plan_handle values.

www.datasense.ir

query_hash query_plan hash — sql handle

L DeA27RSAERA321A5FS - QaFSEL4110A0ASEEE Qn020Q0000953%65123(ER4131R22AR1SHE LN,

CxBOBRRELC0I3AFAFT - DnaEECBOA4FETOZCST | xQ200D000A028A425CCERSTRL0AZERAORIERLE .

(xoebeeelC0a3AFAF7 Ox3EEQECA4FSTER5T | nD200D000E 145823658444 594 2299F TOE LS,
nlan_handle il

0x60001 009833651 20031 2034 02 00000001000000000000. SELECT COUNT(*) FRON sys. objects
0x060001 0088 2844 250292034 0200000001 000000000000, SELECT /*y2+/ TOP L object_1d FRON.
0x060001 00F 145823650222034 02 00000001000000000000. SELECT /*Y1*/ TOP L object _Id FRON s.

Figure 4-2. Fig, 4-2. Multiple plans with the same query hash and query plan_hash

Listing 4-3 provides a more sophisticated version of the script from Listing
4-1 by aggregating statistics from similar queries. The statement and
execution plans are picked up randomly from the first query in each group,
so factor that into your analysis.

Example 4-3. Using the sys.dm_exec_query_stats view with query hash
aggregation

;WITH Data
AS
(
SELECT TOP 50
gs.query hash
, COUNT (*) as [Plan Count]
+MIN (gs.creation time) AS [Cached Time]

+MAX (gs.last execution time) AS [Last Exec Time]

, SUM(gs.execution count) AS [Exec Cnt]

,SUM(gs.total logical reads) AS [Total Reads]

,SUM(gs.total logical writes) AS [Total Writes]

,SUM(gs.total worker time / 1000) AS [Total Worker Time]

,SUM(gs.total elapsed time / 1000) AS [Total Elapsed Time]
(as

, SUM .total rows) AS [Total Rows]

www.datasense.ir

,SUM(gs.total physical reads) AS [Total Physical Reads]
,SUM(gs.total grant kb) AS [Total Grant KB]
,SUM(gs.total used grant kb) AS [Total Used Grant KB]
,SUM(gs.total ideal grant kb) AS [Total Ideal Grant KB]
,SUM(gs.total columnstore segment reads)
AS [Total CSI Segments Read]
yMAX (gs.max dop) AS [Max DOP]
,SUM(gs.total spills) AS [Total Spills]
FROM
sys.dm exec query stats gs WITH (NOLOCK)
GROUP BY
gs.query hash
ORDER BY
SUM((gs.total logical reads + gs.total logical writes) /
gs.execution count) DESC
)
SELECT
d. [Cached Time]
,d.[Last Exec Time]
,d.[Plan Count]
,s9l plan.SQL
,s9l plan. [Query Plan]
,d. [Exec Cnt]
, CONVERT (DECIMAL (10, 5),
IIF (datediff (second,d. [Cached Time], d.[Last Exec Time]) =

NULL,
1.0 * d.[Exec Cnt] /
datediff (second,d. [Cached Time], d.[Last Exec Time])

)
) AS [Exec Per Second]
.[Total Reads] + d.[Total Writes]) / d.[Exec Cnt] AS [Avg I0]
.[Total Worker Time] / d.[Exec Cnt] / 1000) AS [Avg CPU(ms)]
[Total Reads]
[Total Writes]
[Total Worker Time]
[Total Elapsed Time]
[Total Rows]
[Total Rows] / d.[Exec Cnt] AS [Avg Rows]
[Total Physical Reads]
[Total Physical Reads] / d.[Exec Cnt] AS [Avg Physical Reads]
[
[
[
[
[
[
[

14

14

14

~

4

~

~

14

~

~

Total Grant KB]

Total Grant KB] / d.[Exec Cnt] AS [Avg Grant KB]

Total Used Grant KB]

Total Used Grant KB] / d.[Exec Cnt] AS [Avg Used Grant KB]
Total Ideal Grant KB]

Total Ideal Grant KB] / d.[Exec Cnt] AS [Avg Ideal Grant KB]
Total CSI Segments Read]

14

~

4

4

~

14

(d

(d
d.
d.
d.
d.
d.
d.
d.
d.
d.
d.
d.
d.
d.
d.
d.

14

www.datasense.ir

,d.[Total CSI Segments Read] / d.[Exec Cnt] AS [AVG CSI Segments
Read]
,d. [Max DOP]
,d.[Total Spills]
,d.[Total Spills] / d.[Exec Cnt] AS [Avg Spills]
FROM
Data d
CROSS APPLY
(
SELECT TOP 1
SUBSTRING (gt.text, (gs.statement start offset/2)+1,
((
CASE gs.statement end offset
WHEN -1 THEN DATALENGTH (gt.text)
ELSE gs.statement end offset
END - qs.statement_start_offset)/2)+l
) AS SQL
;dp.query plan AS [Query Plan]
FROM
sys.dm exec query stats gs
CROSS APPLY sys.dm exec sqgl text (gs.sgl handle)
gt
CROSS APPLY
sys.dm exec query plan(gs.plan handle) gp
WHERE
gs.query hash = d.query hash AND ISNULL (gt.text,'')
<> !
) sgl plan
ORDER BY
[Avg IO] DESC
OPTION (RECOMPILE, MAXDOP 1);

Starting with SQL Server 2008, you can get execution statistics for stored
procedures through the sys.dm exec procedure stats view. You can use the
code from Listing 4-4 to do that. As with the sys.dm_exec query_stats view,
you can sort data by various execution metrics, depending on your
optimization strategy.

Example 4-4. Using the sys.dm exec procedure stats view

SELECT TOP 50
DB NAME (ps.database id) AS [DB]
,OBJECT NAME (ps.object id, ps.database id) AS [Proc Name]
,Ps.type desc AS [Type]
,Ps.cached time AS [Cached Time]
,Ps.last execution time AS [Last Exec Time]
sgp.query plan AS [Plan]

www.datasense.ir

,Ps.execution count AS [Exec Count]
, CONVERT (DECIMAL (10, 5),
IIF (datediff (second,ps.cached time, ps.last execution time)
=0,
NULL,
1.0 * ps.execution count /
datediff (second,ps.cached time,
ps.last execution time)
)
) AS [Exec Per Second]
, (ps.total logical reads + ps.total logical writes) /
ps.execution count AS [Avg IO]
, (ps.total worker time / ps.execution count / 1000)
AS [Avg CPU(ms)]
,pPs.total logical reads AS [Total Reads]
,Ps.last logical reads AS [Last Reads]
,Ps.total logical writes AS [Total Writes]
,Ps.last logical writes AS [Last Writes]
,ps.total worker time / 1000 AS [Total Worker Time]
,ps.last worker time / 1000 AS [Last Worker Time]
,ps.total elapsed time / 1000 AS [Total Elapsed Time]
,ps.last elapsed time / 1000 AS [Last Elapsed Time]
,ps.total physical reads AS [Total Physical Reads]
,pPs.last physical reads AS [Last Physical Reads]
,ps.total physical reads / ps.execution count AS [Avg Physical
Reads]
,Ps.total spills AS [Total Spills]
,Ps.last spills AS [Last Spills]
, (ps.total spills / ps.execution count) AS [Avg Spills]
FROM
sys.dm exec procedure stats ps WITH (NOLOCK)
CROSS APPLY sys.dm exec query plan(ps.plan handle) gp
ORDER BY
[Avg IO] DESC
OPTION (RECOMPILE, MAXDOP 1);

Figure 4-3 shows partial output of the code.

www.datasense.ir

i Proc Hane — Type Cached Tine Last Exec Ting

1 Indexdptinize SQL_STORED PROCEDURE 2020-D0-03 OL:06:20L.267 2001-81-10 @L:05:00.640
2 archive data SQL_STORED PROCEOURE 2020-20-10 06:d5:00.503 2021-01-12 05:45:20. 367
] archive misc SQL_STORED PROCEDURE 2020-D0-03 BGed7ed2.507 2001-01-12 5:49:36,920
4 AOGREGATE LI, 50U STORED PROCEQURE - 2021-0L-10 @3:Q0:48.407 2021-01-12 1&1%:d6.477
5 archive orde, 50 STORED PROCEDURE - 221-01-18 06:d5:03.187 2020-0L-12 05:d5:26,397
; archive inte, 0L STORED PROCEDURE ~ 2020-01-11 06:d7:20.680 2020-0L-12 0:d:3.947

Plan Erec Count Exec Per Second fvg 10 hug CPU(ns)

HLL ! 0., 80000 Wedse JlIM

aitoPlanfil smlns="http:f, 3 0. ae? LTTELS SA0ed8

aatiowPlanfil anlns="nttg:fn 10 0. Tael o008a0 B779L8

cowPlanfil anlns="ntg:f, 4¥ 0.7 LIV

ik] 0. aa? 4500650 70
cowPlanfil mlns="nitp:f, 2 0. aa? 14560 4T

nnnnnnnnnnnnn

Figure 4-3. Fig. 4-3 Partial output of sys.dm_exec_procedure_stats view

As you can see in the output, you can get execution plans for the stored
procedures. Internally, the execution plans of stored procedures and other T-
SQL modules are just collections of each statement’s individual plan. In

www.datasense.ir

some cases—for example, when a stored procedure involves dynamic SQL
—the script will not return a plan in the output.

Listing 4-5 helps to address this. You can use it to get cached execution
plans and their statistics (for stored procedure statements that have plans

cached).

Example 4-5. Getting execution plan and statistics for stored procedure
statements

SELECT

gs.creation time AS [Cached Time]

,ds.

last execution time AS [Last Exec Time]

, SUBSTRING (gt .text, (gs.statement start offset/2)+1,

((

CASE gs.statement end offset
WHEN -1 THEN DATALENGTH (gt.text)
ELSE gs.statement end offset
END - gs.statement start offset)/2)+1) AS SQL

;gp.query plan AS [Query Plan]
, CONVERT (DECIMAL (10,5),

gs.last

gs.last

) AS

IIF (datediff (second,gs.creation time,
execution time) = 0,
NULL,
1.0 * gs.execution count /
datediff (second, gs.creation time,
execution time)

)

[Exec Per Second]

, (gs.total logical reads + gs.total logical writes) /

gs.execution count AS [Avg IO]

, (gs.total worker time / gs.execution count / 1000)

,ds.
r9S.
r9S.
,ds.
,ds.
,ds.
,ds.
,ds.
,ds.
,ds.
r9S.
r9S.
,ds.
,ds.

AS [Avg CPU(ms)]

total logical reads AS [Total Reads]

last logical reads AS [Last Reads]

total logical writes AS [Total Writes]

last logical writes AS [Last Writes]

total worker time / 1000 AS [Total Worker Time]
last worker time / 1000 AS [Last Worker Time]
total elapsed time / 1000 AS [Total Elapsed Time]
last elapsed time / 1000 AS [Last Elapsed Time]
total rows AS [Total Rows]

last rows AS [Last Rows]

total rows / gs.execution count AS [Avg Rows]
total physical reads AS [Total Physical Reads]
last physical reads AS [Last Physical Reads]
total physical reads / gs.execution count

www.datasense.ir

AS [Avg Physical Reads]
rgs.total grant kb AS [Total Grant KB]
;ds.last grant kb AS [Last Grant KB]
, (gs.total grant kb / gs.execution count)
AS [Avg Grant KB]
;gs.total used grant kb AS [Total Used Grant KB]
,gs.last used grant kb AS [Last Used Grant KB]
, (gs.total used grant kb / gs.execution count)
AS [Avg Used Grant KB]
;gs.total ideal grant kb AS [Total Ideal Grant KB]
;gs.last ideal grant kb AS [Last Ideal Grant KB]
, (gs.total ideal grant kb / gs.execution count)
AS [Avg Ideal Grant KB]
;gs.total columnstore segment reads
AS [Total CSI Segments Read]
;gs.last columnstore segment reads
AS [Last CSI Segments Read]
, (gs.total columnstore segment reads / gs.execution count)
AS [AVG CSI Segments Read]
;gs.max _dop AS [Max DOP]
,gs.total spills AS [Total Spills]
,gs.last spills AS [Last Spills]
, (gs.total spills / gs.execution count) AS [Avg Spills]
FROM
sys.dm exec query stats gs WITH (NOLOCK)
CROSS APPLY sys.dm exec sqgl text(gs.sgl handle) gt
CROSS APPLY sys.dm exec text query plan

(gs.plan handle,gs.statement start offset,gs.statement end offset)

ap
WHERE

OBJECT NAME (gt.objectid, gt.dbid) = <SP Name>
ORDER BY

gs.statement start offset, gs.statement end offset
OPTION (RECOMPILE, MAXDOP 1);

Finally, starting with SQL Server 2016, you can get execution statistics for
triggers and scalar user-defined functions, using sys.dm_exec trigger stats
and sys.dm_exec function_stats, respectively. Listing 4-6 shows the code to
do that.

Example 4-6. Getting execution statistics for user-defined functions and
triggers

SELECT TOP 50
DB NAME (fs.database id) AS [DB]
,OBJECT NAME (fs.object id, fs.database id) AS [Function]

www.datasense.ir

, f£s.
, f£s.
, £s.
ASISH
, fs.
, CONVERT (DECIMAL(10,5),

type desc AS [Type]

execution count AS

cached time AS [Cached Time]
last execution time AS
query plan AS [Plan]

[Exec Count]

IIF (datediff (second, fs.cached time,

NULL,

1.0 * fs.execution count /
datediff (second, fs.cached time,
fs.last execution time)

)

) AS [Exec Per Second]
, (fs.total logical reads + fs.total logical writes) /
fs.execution count AS [Avg IO]
, (fs.total worker time / fs.execution count / 1000) AS [Avg
CPU (ms)]
,fs.total logical reads AS [Total Reads]

, f£s.
, f£s.
, £s.
, fs.
, fs.
, fs.
, E£s.
, £s.
, f£s.

, £s

Reads]

FROM

last logical reads AS [Last Reads]
total logical writes AS
last logical writes AS [Last Writes]
total worker time / 1000 AS [Total Worker Time]
last worker time / 1000 AS [Last Worker Time]

total elapsed time / 1000 AS
last elapsed time / 1000 AS
total physical reads AS
last physical reads AS

[Last Exec Time]

fs.last execution time)

[Total Writes]

[Total Elapsed Time]
[Last Elapsed Time]
[Total Physical Reads]
[Last Physical Reads]

.total physical reads / fs.execution count AS [Avg Physical

sys.dm exec function stats fs WITH (NOLOCK)

CROSS APPLY sys.dm exec query plan(fs.plan handle) gp

ORDER BY
[Avg IO] DESC

OPTION
SELECT TOP 50

(RECOMPILE, MAXDOP 1);

DB NAME (ts.database id) AS [DB]

,OBJECT NAME (ts.object id, ts.database id) AS [Function]

, s
, Ls
, s

r 9P
, ts

.type desc AS [Type]

.cached time AS [Cached Time]

.last execution time AS

.query plan AS [Plan]

.execution count AS

, CONVERT (DECIMAL (10, 5),
IIF (datediff (second, ts.cached time,

NULL,

[Exec Count]

www.datasense.ir

[Last Exec Time]

ts.last execution time)

1.0 * ts.execution count /
datediff (second, ts.cached time,
ts.last execution time)
)
) AS [Exec Per Second]
, (ts.total logical reads + ts.total logical writes) /
ts.execution count AS [Avg IO]
, (ts.total worker time / ts.execution count / 1000) AS [Avg
CPU (ms)]
,ts.total logical reads AS [Total Reads]
,ts.last logical reads AS [Last Reads]
,ts.total logical writes AS [Total Writes]
,ts.last logical writes AS [Last Writes]
,ts.total worker time / 1000 AS [Total Worker Time]
,ts.last worker time / 1000 AS [Last Worker Time]
,ts.total elapsed time / 1000 AS [Total Elapsed Time]
,yts.last elapsed time / 1000 AS [Last Elapsed Time]
,ts.total physical reads AS [Total Physical Reads]
,ts.last physical reads AS [Last Physical Reads]
,ts.total physical reads / ts.execution count AS [Avg Physical
Reads]
FROM
sys.dm exec trigger stats ts WITH (NOLOCK)
CROSS APPLY sys.dm exec query plan(ts.plan handle) gp
ORDER BY
[Avg IO] DESC
OPTION (RECOMPILE, MAXDOP 1);

Troubleshooting based on plan cache-based execution statistics has several
limitations, and you may miss some queries. Nevertheless, it is a great
starting point. Most importantly, the data is collected automatically and you
can access it immediately, without setting up additional monitoring tools.

SQL Traces and Extended Events

I am sure that every SQL Server engineer is aware of SQL Traces and
Extended Events. They allow you to capture various events in a system for
analysis and troubleshooting in real time. You can also use them to capture
long-running and expensive queries, including those that don’t cache
execution plans and are therefore missed by the sys.dm exec_query_stats
view.

www.datasense.ir

I’d like to start this section with a warning, though: Do not use SQL Traces
and xEvents for this purpose unless it is absolutely necessary. Capturing
executed statements is an expensive operation that may introduce significant

performance overhead in busy systems. (You saw one such example in
Chapter 1.)

It does not matter how much data you collect. You can exclude most
statements from the output by filtering out queries with low resource
consumption. But SQL Server will still have to capture all statements to
evaluate, filter, and discard unnecessary events.

Don’t collect unnecessary information in events you are collecting or in
xEvent actions you are capturing. Some actions—for example, callstack—
are expensive and lead to a serious performance hit when enabled.

I do not want to beat a dead horse, but I have no choice: use Extended
Events instead of SQL Traces. They are lighter and introduce less overhead
in the system. Choose an in-memory ring_buffer target and allow event loss
in configuration when possible.

Table 4-1 shows several Extended and SQL Trace Events that can be used to
detect inefficient queries.

www.datasense.ir

N 39~ o ™

~

e ey EmuRm T RN Qi

N o o o »~ v =

www.datasense.ir

N RSN TIR S O SNTNAASI TR NR Q0 Y~

~,

SQL Trace Event

xEvent Comments

Fired when statement starts the

www.datasense.ir

SQL:StmtStarting

SQL:StmtCompleted

SP:StmtStarting

SP:StmtCompleted

RPC:Starting

execution.
sqlserver.sql_statement starting

Fired when statement finishes the
sqlserver. execution.

sql_statement completed

Fired when SQL statement within T-SQL module (stored
S procedure, user-defined function, etc.) starts the
execution.
glserver.sp stateme
nt_starting

sqlserver.sp_statement Fired when SQL statement within T-SQL module
completed completes the execution.

Fired when remote procedure call (RPC) is starting.

Those calls are parameterized SQL requests, such as calls
sqlserver.rpc_starti of stored procedures or parameterized batches, sent from
ng applications. Many client libraries will run queries via

sp_executesql calls, which can be captured by that event.

Fired when RPC completes.

RPC:Completed sqlserver.rpc_completed

SP:Starting

Fired when T-SQL module starts execution.
sqlserver.module_start

www.datasense.ir

sqlserver.module en Fired when T-SQL module completes the
d execution.
SP:Complerted

Occurs when client terminates query execution due to
timeout or connection loss.
Error: Attention sqlserver.attention

Usually, when I need to capture inefficient queries, I set up an xEvents
session capturing sqlserver.rpc_completed, sqlserver.sql completed, and
sqlserver.attention events and filtering data by execution metrics, such as
cpu_time or logical reads. As part of the event, I capture several actions,
most notably sqlserver.sql text and client information.

Listing 4-7 shows code to capture queries that consume more than 3,000ms
of CPU time or produce more than 10,000 logical reads or writes. This code
will work in SQL Server 2012 and above; it may require small
modifications in SQL Server 2008 due to the different way it works with the
file target.

Example 4-7. Capturing CPU- and I/O intensive queries

CREATE EVENT SESSION [Expensive Queries]
ON SERVER
ADD EVENT
sglserver.sql statement completed
(
ACTION
(
sglserver.client app name
,Sglserver.client hostname
,Sglserver.database id
,Sglserver.plan handle
,Sgdlserver.sql text

www.datasense.ir

’ sqlserver .username

)

WHERE
(
(
cpu_time >= 3000000 or -- Time in microseconds
logical reads >= 10000 or
writes >= 10000
) AND
sglserver.is system = 0
)
),
ADD EVENT

sglserver.rpc completed
(
ACTION
(
sglserver.client app name
,Sglserver.client hostname
,Sglserver.database id
,Sglserver.plan handle
,Sglserver.sql text
; Sglserver.username
)
WHERE
(

cpu_time >= 3000000 or
logical reads >= 10000 or
writes >= 10000

) AND

sglserver.is system = 0

)
ADD TARGET

packageO.event file

(
SET FILENAME = 'c:\ExtEvents\Expensive Queries.xel'
WITH
event retention mode=allow single event loss
ymax _dispatch latency=30 seconds
)7
You can parse the captured results with the code from Listing 4-8.

Example 4-8. Parsing collected xEvent data

www.datasense.ir

;WITH TargetData(Data, File Name, File Offset)
AS
(
SELECT CONVERT (xml,event data) AS Data, file name, file offset
FROM
sys.fn xe file target read file
('c:\extevents\Expensive Queries*.xel',NULL,NULL,NULL)
)
,EventInfo ([Event], [Event Time], [DB], [Statement], [SQL], [User Name]
, [Client], [App]l, [CPU Time], [Duration], [Logical Reads]
;, [Physical Reads], [Writes], [Rows], [PlanHandle]
,File Name,File Offset)

as
(
SELECT
Data.value ('/event[l]/@name', 'sysname') AS [Event]
,Data.value('/event[1l]/Qtimestamp', 'datetime') AS [Event Time]
,Data.value (' ((/event[l]/data[@name="database id"]/value/text())
[1]) ', "INT")
AS [DB]
,Data.value (' ((/event[l]/data[@name="statement"]/value/text ())
[1]1)"
, 'nvarchar (max) ') AS [Statement]
,Data.value (' ((/event[l]/data[€name="sqgl text"]/value/text())
[1])"
, 'nvarchar (max) ') AS [SQL]
,Data.value (' ((/event[l]/data[@name="username"]/value/text ())
[1]1)"
, 'nvarchar (255) ') AS [User Name]
,Data.value (' ((/event[l]/data[€name="client hostname"]/value/text())
[11)"
, 'nvarchar (255) ') AS [Client]
,Data.value (' ((/event[l]/data[@name="client app name"]/value/text())
[11)"
, 'nvarchar (255) ') AS [App]
,Data.value (' ((/event[l]/data[@name="cpu time"]/value/text())
[1])"
, 'bigint') AS [CPU Time]
,Data.value (' ((/event[1l]/data[@name="duration"]/value/text ())
[11)"
, 'bigint') AS [Duration]
,Data.value (' ((/event[l]/data[@name="1logical reads"]/value/text())
[11)"

,'int') AS [Logical Reads]

www.datasense.ir

,Data.value (' ((/event[l]/data[@name="physical reads"]/value/text())
[1])"
,'int') AS [Physical Reads]

,Data.value (' ((/event[l]/data[@name="writes"]/value/text()) [1])"
,'int') AS [Writes]
,Data.value (' ((/event[l]/data[€name="row count"]/value/text())

[(11)°'
,'"int') AS [Rows]
,Data.value (

'xs:hexBinary (((/event[l]/action[@name="plan handle"]/value/text())
[(11))"
, 'varbinary (64) ') AS [PlanHandle]
,File Name
File Offset

FROM
TargetData
)
SELECT
ei.*, gp.Query Plan
FROM

EventInfo ei
OUTER APPLY sys.dm exec query plan(ei.PlanHandle) gp
OPTION (MAXDOP 1, RECOMPILE)

When you work with SQL Traces and xEvents, you have to deal with raw
data. You’ll need to aggregate it to determine which queries introduce the
most cumulative impact.

Again: beware of the overhead that xEvents and SQL Traces introduce in
systems. Do not create and run those sessions permanently. In many cases
you can get enough troubleshooting data by enabling the session or trace for
just a few minutes.

For more extensive examples on how to work with different xEvents targets,
see the code repository that accompanies this book. You can also read more
about Extended Events in my book Pro SQL Server Internals.

Query Store

So far in this chapter, we have discussed two approaches to detecting
inefficient queries. Both have limitations. Plan-cache-based data may miss

www.datasense.ir

some queries; SQL Traces and xEvents require you to perform complex
analysis of the output and may have significant performance overhead in
busy systems.

The Query Store, introduced in SQL Server 2016, helps to address those
limitations. You can think of it as something like the flight data recorders (or
“black boxes”) in airplane cockpits, but for SQL Server. When the Query
Store is enabled, SQL Server captures and persists runtime statistics and
execution plans of the queries in the database. It shows how the execution
plans perform and how they evolve over time. Finally, it allows you to force
specific execution plans to queries addressing parameter-sniffing issues,
which we will discuss in Chapter 6.

NOTE

The Query Store is disabled by default in the on-premises version of SQL Server. It is
enabled by default in Azure SQL Databases and Azure SQL Managed Instances.

The Query Store 1s fully integrated into the query processing pipeline, as
illustrated by the high-level diagram in Figure 4-4.

www.datasense.ir

Get Plan from

* Outdated statistics

Not Found ;
i Schema changes

Check for
Forced Plan

Check for
Recompile

1es New forced or unforced plan

+—Exists

Recompile using

Forced Plan o
Not Exist ‘
Compile and Query Store
Optimize Query
Execute

Query and Plan

w Fxecution Statistics

Figure 4-4. Fig. 4-4. Query processing pipeline

When a query needs to be executed, SQL Server looks up the execution plan
from the plan cache. If it finds a plan, SQL Server checks if the query needs
to be recompiled (due to statistics updates or other factors), if a new forced
plan has been created, and if an old forced plan has been dropped from the
Query Store.

During the compilation, SQL Server checks if the query has a forced plan
available. When that happens, the query essentially gets compiled with the

www.datasense.ir

forced plan, much like when the USE PLAN hint is used. If the resulting
plan is valid, it is stored in the plan cache for reuse.

If the forced plan is no longer valid (for example, when a user drops an
index referenced in the forced plan), SQL Server does not fail the query.
Instead, it compiles the query again without the forced plan and without
caching it afterwards. The Query Store, on the other hand, persists both
plans, marking the forced plan as invalid. All of that happens without
affecting the applications.

Despite its tight integration with the query processing pipeline and various
internal optimizations, Query Store still adds overhead to the system. Just
how much overhead depends on two main factors: the number of
compilations and the data collection settings.

The more compilations SQL Server performs, the more load the Query Store
must handle. In particular, the Query Store may not work very well in
systems that have a very heavy, ad-hoc, non-parameterized workload.

Query Store’s configurations allow you to specify if you want to capture all
queries or just expensive ones, along with aggregation intervals and data
retention settings. If you collect more data and/or use smaller aggregation
intervals, you’ll have more overhead.

The overhead introduced by the Query Store is usually relatively small.
However, it may be significant in some cases. For example, I’ve been using
the Query Store to troubleshoot the performance of one process that consists
of a very large number of small ad-hoc queries. I captured all queries in the
system using QUERY CAPTURE MODE=ALL mode, collecting almost
10GB of data in the Query Store. The process took 8 hours to complete with
the Query Store enabled, comparing to 2.5 hours without it.

Nevertheless, I suggest enabling Query Store if your system can handle the
overhead. Some SQL Server features, such as Intelligent Query Processing,
rely on Query Store data and will benefit from it.

www.datasense.ir

NOTE

Monitor QDS* waits when you enable Query Store. Excessive QDS* waits may be a
sign of higher Query Store overhead in the system. Ignore

QDS _PERSIST TASK MAIN LOOP SLEEP and QDS ASYNC QUEUE waits —
they are benign.

You can work with the Query Store in two ways — through the graphics Ul
in SSMS or by querying data management views directly. Let’s look at the
UTI first.

Query Store SSMS Reports

After you enable the Query Store in the database, you’ll see a Query Store
folder in the Object Explorer (Figure 4-5). The number of reports in the
folder will depend on the versions of SQL Server and SSMS in your system.
The rest of this section will walk you through the seven reports shown in
Figure 4-5.

www.datasense.ir

=] i SQLServerInternals

Database Diagrams

Tables

Views

External Resources

Synonyms

Programmability

Query Store

& Regressed Queries

& Overall Resource Consumption

O FHFFEE

& Top Resource Consuming Queries
@ Queries With Forced Plans
& Queries With High Variation
& Query Wait Statistics
& Tracked Queries
Service Broker
[l

Figure 4-5. Fig. 4-5. Query Store reports in SSMS

Regressed Queries

This report, shown in Figure 4-6, shows queries whose performance has
regressed overtime. You can configure the time frame and regression criteria
(such as disk operations, CPU consumption, and number of executions) for
analysis.

www.datasense.ir

Regressed Queries [SQLServernternals] vOX

Top 25 regressed queries for database SQLServerinternals. Time period: 1/12/2021 1:40 PM - 1/13/2021 1:55 PM

Metric Logical Reads (KB) ¥ Stafistic Avg ¥ 4] _ Plan summary for queny 14+ 2 bR iER])
)
6000-
Plan Id 4 -
000 Execution Type Completed O
X
6 00 Plan Forced No
g " Interval Start 2021-01-13 13:00:00.000 -05:00 Plan Id
g Interval End 2021-01-13 14:00:00.000 -05:00 0
E 2000- Execution Count 1001
i 00 Total Logical Reads (KB) 1049696272 O
0 Avg Logical Reads (KB) ~ 1048647.62 —
0 _
! " Min Logical Reads (KB) 272 "
, Max Logical Reads (KB) 104969
query id
''' Std Dev Logical Reads (KB) 33118.21
i}
Plan 4 ot force] Variation Logical Reads (KB) 003 {8 UnforeePln :
Query 1: Query cost (relative S
select @Salary = Avg(Salary) from dbo.Employees where Country = @Country
) |
it @ r{&
— —— Strean Aggregate — Nested Loops —Index Seek (NonCl.
SELECT Compute Scalar , L -
Cost: 1 Cost: 0 (Aggregate) (Inner Join) (Employees]. [IDX ..
Cost: 0 % Cost: 0% Cost: € %
i
—Key Lookup (Clust..
(Employees]. [PX E.
Cost: 94 %

www.datasense.ir

Figure 4-6. Fig 4-6. Regressed Queries report

Choose the query in the graph on the top left. The top right portion of the
report illustrates collected execution plans for the selected query. You can
click on the dots, which represent different execution plans, and see the
plans at the bottom. You can also compare different execution plans.

The Force Plan button allows you to force a selected plan for the query. It
calls the sys.sp_query store force plan stored procedure internally.
Similarly, the Unforce Plan button removes a forced plan by calling the
sys.sp_query_store unforce plan stored procedure.

The Regressed Queries report is a great tool for troubleshooting issues
related to parameter sniffing, which we will discuss in Chapter 6, and fixing
them quickly by forcing specific execution plans.

Top Resource Consuming Queries

This report (Figure 4-7) allows you to detect the most resource-intensive
queries in the system. While it works similarly to the data provided by
sys.dm_exec_query_stats view, it does not depend on the plan cache. You
can customize the metrics used for data sorting and the time interval.

www.datasense.ir

Top Resource Consumers SQLSenvernfermals] vOX

Top 25 resource consumers for database SQLServerMnternals. Time period: Last hour ending at 1/13/2021 1:50 PM

Metiic' CPU Time (ms) v Satit Plen summeny for query 14 B 53 55 53 M)
) o0 planid pln forced evecutn ype - execution count min cpu time. max cputime g pu ime- sl dev pu ime v
AT 0 1001 01 111 VA 0
80000 210 0 200 (LI R 0N 0
g S0
: Query ld [
J
R T 11
0
0 i ObjectName ~ GetAverageSalary
Total CPU Time (ms) 9316822
0]:1 Execution Count 3001
Plan Count !
)
g 11
Plan 4 ot forced (@ Courtr vercha(54), @Salry moneyselct @Salry = AvgSelny ‘ﬂ@ Fore lan |5 Unfore Plen :
Duery 1 Ouel fr;m dboEmployees
select B9alal et iy = Quney ry = BCountry

I

~—— Strean Aggregate — Nested Loops = Index Seek (NonCL.
(Aggreqate) (Inner Join) | [Employees].[IDK ..
Cost: 0% Cost: 0% Cost: 6%

p
—Key Lookup (Clust..

[Emplogees] . [PK E.
Cost: 94 %

SELECT —Compute Scalar
Cost: 0 % Cost: (5

www.datasense.ir

Figure 4-7. Fig. 4-7. Top Resource Consuming Queries report

Overall Resource Consumption

This report shows you the workload’s statistics and resource usage over the
time intervals you specify. It will allow you to detect and analyze spikes in
resource usage and drill down to the queries that introduce such spikes.
Figure 4-8 shows the output of the report.

www.datasense.ir

Qverall Resource Consumption [SOLServernternals] *OX

Overall resources consumption during the last hour for database SQLServerInternals B Configure

‘ ¢ Refresh ‘] Standard Grid | |, Chart
Duration Execution Count
300-
15000000- 230
- ¥
é é?_{)ﬁ'
£ 10000000- c
2 §150-
g 3
g g
ui 100
5000000-
-
G-I T = ”_ ll- I I I I I I I I G-I |n D l D m I I I I I I I I
1G40AM 1BS0AM TEODAM 1110AM 11:20AM 1130AM 1G0AM 1G50AM T100AM 1110AM T120AM 11:30AM
1045AM 1055AM TROSAM 1115AM 1125AM 11:35AM 1045AM 1055AM T105AM T115AM 1125AM 11:35AM
CPU Time Logical Reads
20000000~
15000000
3 1500000
& 1000000 ¢
S 5
3 210000000~
a g
U -
5000000
5000000~
1 | H lr | | | | | | | | 0’| 1 A | | | | | | | |
1040AM 1050AM TL00AM 1110AM 11:20AM 1130AM 1040AM 1050AM TL00AM 11:10AM 11:20AM 11:30AM
1B45AM 1S5AM TROSAM T115AM 1125AM 11:35 AM 1:45AM 1055AM 1R0SAM T1A5AM 1125AM 11:35AM

Figure 4-8. Fig. 4-8. Overall Resource Consumption report

Queries With High Variation

This report allows you pinpoint queries with high performance variation.
You can use it to detect anomalies in the workload, along with possible

performance regressions. (For the sake of space, I’ll skip the screenshots
here.)

www.datasense.ir

Queries With Forced Plan

This report shows you the queries that have an execution plan forced in the
system.

Query Wait Statistics

This report allows you to detect queries with high waits. The data is grouped
by several categories (such as CPU, disk, and blocking), depending on wait
type. You can see details on wait mapping in the Microsoft Documentation.

Tracked Queries

Finally, the Tracked Queries report allows you to monitor execution plans
and statistics for individual queries. It provides similar information to the
Regressed Queries and Top Resource Consuming Queries reports, at the
scope of individual queries.

These reports will give you a large amount of data for analysis. However, in
some cases, you’ll want to use T-SQL and work with the Query Store data
directly. Let’s look at how you can accomplish that.

Working with Query Store DMVs

The Query Store data management views (DMVs) are highly normalized, as
shown in Figure 4-9. Execution statistics are tracked for each execution plan
and grouped by collection intervals, which are defined by the

INTERVAL LENGTH MINUTES setting.

As I’ve noted, the smaller the intervals you use, the more data will be
collected and persisted in the Query Store. The same applies to the system
workload: an excessive number of ad-hoc queries may balloon the Query
Store’s size. Keep this in mind when you configure the Query Store in your
system.

www.datasense.ir

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-wait-stats-transact-sql

sys.query_store_wait_stats

wait_stat id

sys.query_store_plan

sys.query_store_runtime_stats

plan_id

runtime_stats_interval _id

wait_category

< wait time and stats >

i

sys.query_store_runtime_stats_
interval

runtime_stats_interval id

start_time

end_time

ﬂ plan_id H runtime_stats_id
query_id € plan_id
query_plan runtime_stats_interval id 3
is_forced_plan <execution statistics >
last_force_failure_reason
sys.query_store_query
<other columns >
-ﬂ query_id
sys.query_store_query_text ’ ey text i
H Query_text id context_setting_id 3

query sql_text

<other columns >

query_hash

<compilation statistics >

sys.query_context_settings

context_setting_id

set_options

default_schema_id

<other columns >

www.datasense.ir

Figure 4-9. Fig. 4-9. Query Store DMVs

You can logically separate DMVs into two categories: plan store and
runtime statistics. The former ones include the following views:

sys.query store query
The sys.query_store query view provides information about queries and
their compilation statistics, and last execution time.

sys.query store query text
The sys.query store query text view shows information about query
text.

Sys.query context setting

The sys.query context setting view contains information about context
settings associated with the query. It includes SET options, default
schema for the session, language, and other attributes. SQL Server may
generate and cache separate execution plans for the same query when
those settings are different.

Sys.query store plan

The sys.query_store plan view provides information about query
execution plans. The is_forced plan column indicates whether the plan
is forced. The last force failure reason tells you why a forced plan was
not applied to the query.

As you can see, each query can have multiple entries in the
sys.query_store query and sys.query store plan views. This will vary based
on your session context options, recompilations, and other factors.

Three other views represent runtime statistics:
Sys.query store runtime stats interval

The sys.query store runtime_stats interval view contains information
about statistics collection intervals.

www.datasense.ir

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-query-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-query-text-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-query-context-settings-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-plan-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-runtime-stats-interval-transact-sql

Sys.query store runtime stats

The sys.query store runtime_stats view references the

sys.query_store plan view and contains information about runtime
statistics for a specific plan during a particular

sys.query store runtime_stats interval interval. It provides information
about execution count, CPU time and call durations, logical and physical
I/O statistics, transaction log usage, degree of parallelism, memory grant
size, and a few other useful metrics.

sys.query store walt stats

Starting with SQL Server 2017, you can get information about query
waits with the sys.query store wait_stats view. The data is collected for
each plan and time interval and grouped by several wait categories,
including CPU, memory, and blocking.

Let’s look at a few scenarios for working with Query Store data.

Listing 4-9 provides code that returns information about the system’s 50
most I/O-intensive queries. Because the Query Store persists execution
statistics over time intervals, you’ll need to aggregate data from multiple
sys.query_store runtime_stats rows. The output will include data for all
intervals that ended within the last 24 hours, grouped by queries and their
execution plans.

Example 4-9. Getting information about expensive queries from Query Store

SELECT TOP 50

g.query id, gt.query sqgl text, gp.plan id, gp.query plan
,SUM(rs.count executions) AS [Execution Cnt]
, CONVERT (INT, SUM(rs.count executions *

(rs.avg_logical io reads + avg logical io writes)) /

SUM (rs.count executions)) AS [Avg IO]

,CONVERT(INT,SUM(rs.count_executions *

(rs.avg logical io reads + avg logical io writes))) AS [Total

I0]
, CONVERT (INT, SUM(rs.count executions * rs.avg cpu time) /
SUM(rs.count executions)) AS [Avg CPU]
, CONVERT (INT, SUM(rs.count executions * rs.avg cpu time)) AS [Total
CPU]

www.datasense.ir

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-runtime-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-wait-stats-transact-sql

, CONVERT (INT, SUM(rs.count executions * rs.avg duration) /
SUM (rs.count executions)) AS [Avg Duration]
, CONVERT (INT, SUM(rs.count executions * rs.avg duration))
AS [Total Duration]
, CONVERT (INT, SUM(rs.count executions * rs.avg physical io reads) /
SUM(rs.count executions)) AS [Avg Physical Reads]
, CONVERT (INT, SUM(rs.count executions * rs.avg physical io reads))
AS [Total Physical Reads]
, CONVERT (INT, SUM(rs.count executions *
rs.avg query max used memory) /
SUM (rs.count executions)) AS [Avg Memory Grant Pages]
, CONVERT (INT, SUM(rs.count executions *
rs.avg_query max used memory))
AS [Total Memory Grant Pages]
, CONVERT (INT, SUM(rs.count executions * rs.avg rowcount) /
SUM(rs.count executions)) AS [Avg Rows]
, CONVERT (INT, SUM(rs.count executions * rs.avg rowcount)) AS [Total
Rows]
, CONVERT (INT, SUM(rs.count executions * rs.avg dop) /
SUM (rs.count executions)) AS [Avg DOP]
, CONVERT (INT, SUM(rs.count executions * rs.avg dop)) AS [Total DOP]
FROM
sys.query store query g WITH (NOLOCK)
JOIN sys.query store plan gp WITH (NOLOCK) ON
g.query id = gp.query id
JOIN sys.query store query text gt WITH (NOLOCK) ON
g.query text id = gt.query text id
JOIN sys.query store runtime stats rs WITH (NOLOCK) ON
gp.plan id = rs.plan id
JOIN sys.query store runtime stats interval rsi WITH (NOLOCK) ON

rs.runtime stats interval id = rsi.runtime stats interval id
WHERE
rsi.end_time >= DATEADD (DAY, -1, GETDATE ())
GROUP BY

g.query id, gt.query sqgl text, gp.plan id, gp.query plan
ORDER BY

[Avg IO] DESC
OPTION (MAXDOP 1, RECOMPILE) ;

Obviously, you can sort data by different criteria than average 1/0. You can
also add predicates to the WHERE and/or HAVING clauses of the query to
narrow down the results. For example, you can filter by DOP columns if
you want to detect queries that use parallelism in an OLTP environment and
fine-tune the Cost Threshold for Parallelism setting,

www.datasense.ir

Another example is for detecting queries that balloon the plan cache. The
code in Listing 4-10 provides information about queries that generate
multiple execution plans due to different context settings. The two most
common reasons for this are sessions that use different SET options and
queries that reference objects without schema names.

Example 4-10. Queries with different context settings

SELECT
g.query id, gt.query sqgl text
, COUNT (DISTINCT g.context settings id) AS [Context Setting Cnt]
, COUNT (DISTINCT gp.plan id) AS [Plan Count]
FROM
sys.query store query q WITH (NOLOCK)
JOIN sys.query store query text gt WITH (NOLOCK) ON
g.query text id = gt.query text id
JOIN sys.query store plan gp WITH (NOLOCK) ON
g.query id = gp.query id

GROUP BY

g.query id, gt.query sqgl text
HAVING

COUNT (DISTINCT g.context settings id) > 1
ORDER BY

COUNT (DISTINCT g.context settings id)
OPTION (MAXDOP 1, RECOMPILE) ;

Listing 4-11 shows you how to find similar queries based on query hash
value. Usually, those queries belong to a non-parameterized ad-hoc
workload in the system. You can parameterize those queries in the code. If
that’s not possible, consider using forced parameterization, which we will
discuss in Chapter 6.

Example 4-11. Detecting queries with duplicated query hash value

SELECT TOP 100
g.query hash
, COUNT (*) AS [Query Count]
,AVG (rs.count executions) AS [Avg Exec Count]
FROM
sys.query store query g WITH (NOLOCK)
JOIN sys.query store plan gp WITH (NOLOCK) ON
g.query id = gp.query id
JOIN sys.query store runtime stats rs WITH (NOLOCK) ON
gp.plan_id = rs.plan id
GROUP BY
g.query hash

www.datasense.ir

HAVING
COUNT (*) > 1
ORDER BY
[Avg Exec Count] ASC, [Query Count] DESC
OPTION (MAXDOP 1, RECOMPILE) ;

You can view additional examples in the book’s code repository.

As you can see, the possibilities are endless. Use the Query Store if you can
afford its overhead in your system.

Third-Party Tools

As you’ve now seen, SQL Server provides a very rich and extensive set of
tools to locate inefficient queries. Nevertheless, you may also benefit from
monitoring tools developed by other vendors. Most will provide you with a
list of most resource-intensive queries for analysis and optimization. Many
will also give you the baseline, which you can use to analyze trends and
detect regressed queries.

I am not going to discuss specific tools; instead, I want to offer you a few
tips for choosing and using these tools.

The key to using any tool is understanding it. Research how it works and
analyze its limitations and what data it may miss. For example, if a tool gets
data by polling the sys.dm_exec requests view on schedule, it may miss a
big portion of small but frequently executed queries that run in between
polls. Alternatively, if a tool determines inefficient queries by session waits,
the results will greatly depend on your system’s workload, the amount of
data cached in the buffer pool, and many other factors.

Depending on your specific needs, these limitations might be acceptable.
Remember the Pareto principle (also known as the “80/20 rule”): you don’t
need to optimize all inefficient queries in the system. Nevertheless, you may
benefit from a holistic view and from multiple perspectives. For example, it
1s very easy to cross-check a tool’s list of inefficient queries against the
plan-cache-based execution statistics for a more complete list.

www.datasense.ir

https://en.wikipedia.org/wiki/Pareto_principle

There is another important reason to understand your tool, though:
estimating the amount of overhead it could introduce. Some DMVs are very
expensive to run. For example, if a tool calls the sys.dm exec query plan
function during each sys.dm_exec requests poll, it may lead to a measurable
increase in overhead in busy systems. It is also not uncommon for tools to
create traces and xEvent sessions without your knowledge.

In the end, choose the approach that best allows you to pinpoint inefficient
queries and that works best with your system. Remember that query
optimization will help in any system.

Summary

Inefficient queries impact SQL Server’s performance and can overload the
disk subsystem. Even in systems that have enough memory to cache data in
the buffer pool, those queries burn CPU, increase blocking, and affect the
customer experience.

SQL Server keeps track of execution metrics for each cached plan and
exposes them through the sys.dm exec query_stats view. You can also get
execution statistics for stored procedures, triggers, and scalar user-defined
functions with sys.dm_exec procedure stats, sys.dm_exec_trigger stats,
and sys.dm_exec function stats views, respectively.

Your plan-cache-based execution statistics will not track runtime execution
metrics in execution plans, nor will it include queries that do not have plans
cached. Make sure to factor this to your analysis and query-tuning process.

You can capture inefficient queries in real time with Extended Events and
SQL Traces. Both approaches introduce overhead, especially in busy
systems. They also provide raw data, which you’ll need to process and
aggregate for further analysis.

In SQL Server 2016 and above, you can utilize the Query Store. This is a
great tool that does not depend on the plan cache and allows you to quickly
pinpoint plan regressions. The Query Store adds some overhead; this may be
acceptable in many cases, but monitor it when you enable the feature.

www.datasense.ir

Finally, I discussed how you can use third-party monitoring tools to find
inefficient queries. Remember to research how a tool works and understand
its limitation and overhead.

In the next chapter, we will discuss a few common techniques that you can
use to optimize inefficient queries.

Troubleshooting Checklist

Get the list of inefficient queries from the sys.dm_exec query stats
view. Sort the data according to your troubleshooting strategy
(CPU, I/O, and so forth).

Detect the most expensive stored procedures with the
sys.dm_exec_procedure stats view.

Consider enabling the Query Store in your system and analyzing
the data you collect. (This may or may not be feasible if you
already use external monitoring tools.)

Analyze data from third-party monitoring tools and cross-check it
with SQL Server data.

Analyze the overhead that inefficient queries introduce in the
system. Correlate queries’ resource consumption with wait statistics
and server load.

Optimize queries if you determine this is needed.

www.datasense.ir

Chapter 5. Intro to Query
Tuning

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be Chapter 5 of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

The topic of query optimization and tuning is easily worth another book.
Indeed, there are many books available already and I encourage you to read
them and master your skills. I will not try to duplicate them here; instead,
this chapter will cover some of the most important concepts you need to
understand to tune the queries.

You cannot master the process of query optimization without understanding
the internal index structure and patterns that SQL Server uses to access
data. This chapter thus begins with a high-level overview of B-Tree indexes
and seek-and-scan operations.

Next, I discuss statistics and cardinality estimations, along with ways to
read and analyze execution plans.

Finally, I cover several common issues you might encounter during the
query tuning process, offering advice on how to address them and index the
data.

Data Storage and Access Patterns

Modern SQL Server versions support three data storage and processing
technologies. The oldest and most commonly used one is row-based
storage. With row-based storage, all table columns are combined together
into the data rows that reside on 8KB data pages. Logically, those data rows
belong to B-Tree indexes or heaps (which we’ll discuss in a moment).

Starting with SQL Server 2012, you can store some indexes or entire tables
in columnar format using column-based storage. The data in such indexes
is heavily compressed and stored on a per-column basis. This technology is
optimized and provides great performance for read-only analytical queries
that scan large amounts of data. Unfortunately, it does not scale well in an
OLTP workload.

Finally, starting with SQL Server 2014, you can use In-Memory OLTP and
store data in memory-optimized tables. The data in such tables resides
completely in memory and is great for heavy OLTP workloads.

NOTE

You can use all three technologies—row-based, column-based, and memory-optimized
tables—together, partitioning data between them. This approach is extremely useful
when you need to support heavy OLTP and analytical workloads in the same system. I
cover that architecture pattern in detail in my book Pro SQL Server Internals.

Row-based storage is the default and by far most common storage
technology in SQL Server. The CREATE TABLE and CREATE INDEX
statements will store data in a row-based format unless you specify
otherwise. It can handle moderate OLTP and analytical workloads and
introduces less database administration overhead than columnstore indexes
and In-Memory OLTP.

In this chapter, I will focus on row-based storage and queries that work with
B-Tree indexes. I will discuss troubleshooting aspects of columnstore
indexes and In-Memory OLTP in Chapters 8 and 14.

www.datasense.ir

Let’s look at how SQL Server stores data in row-based storage.

Row-Based Storage Tables

Internally, the structure of a row-based table consists of multiple elements
and internal objects, as shown in Figure 5-1.

www.datasense.ir

- sz |1 30N DA
‘ﬂ Page
. ROW OVERFLOW DATA
Ptan] ey (Ot

Jﬂ \ Page
1 {(Custered Indes o Heap):'.,‘
A wtionh | 08 DA

o 0t (Il (optioa
Page

(Nonclustered Index)){ Partition 1
\Alocat‘on

4 Pattion] "
(Nonclustered Index)
3 Partion

-

LN

0N -

Figure 5-1. Internal table structure

The data in the tables is stored either completely unsorted (those tables are
called heap tables or heaps) or sorted based on the value of a clustered
index key, when such an index is defined.

www.datasense.ir

I am not going to dive deep into detail, but as a general rule, it is better to
avoid heaps and define clustered indexes on your tables. There are some
edge cases when heap tables may outperform tables with clustered indexes;
nevertheless, heaps have several shortcomings. In most cases, you’ll get
better performance when tables have clustered indexes.

In addition to a single clustered index, every table may have a set of
nonclustered indexes: separate data structures that store copies of the data
from a table sorted according to index key columns. For example, if a
column is included in two nonclustered indexes, SQL Server would store
that data three times - once in a clustered index or heap, and once in each
nonclustered index.

While SQL Server allows you to create large numbers of nonclustered
indexes, doing so is not a good idea. In addition to storage overhead, SQL
Server needs to insert, update, or delete data in each nonclustered index
during data modifications maintaining multiple copies of the data.

Internally, each index (and heap) consists of one or more partitions. You can
think of each partition as an internal data structure (index or heap) that is
independent from other partitions in the table. You can use a different
partition strategy for every index in the table; however, it is usually
beneficial to partition all indexes in the same way, aligning them with each
other.

As I mentioned above, the actual data is stored in data rows on 8KB data
pages with 8,060 bytes available to users. The data from all columns is
stored together with exception when column data does not fit on the data

page.

The data pages combine into three different categories called allocation
units.

IN_ ROW_DATA allocation unit pages store the main data row objects,
which consist of internal attributes and the data from fixed-length columns
(such as int, datetime, float, etc.). The in-row part of a data row must fit on
a single data page, so it cannot exceed 8,060 bytes. The data from variable-
length columns, such as (n)varchar(max), (n)varbinary(max), xml and

www.datasense.ir

others, may also be stored in-row in the main row object when it fits into
this limit.

When variable-length data does not fit in-row, SQL Server stores it off-row
on different data pages, referencing them through in-row pointers. Variable-
length data that exceeds 8,000 bytes is stored on LOB_DATA allocation
unit data pages (LOB stands for large objects). Otherwise, the data is stored
in ROW_OVERFLOW_DATA allocation unit pages.

I’d like to repeat a well-known piece of advice here: Do not use retrieve
unnecessary columns in SELECT statements, especially with the SELECT
* pattern. This may lead to additional I/O operations to get data from oft-
row pages, and may also defer usage of covered indexes, as you’ll see later
in the chapter.

Finally, SQL Server logically groups sets of eight pages into 64KB units
called extents. There are two types of extents available. Mixed extents store
data that belongs to different objects. Uniform extents store the data for the
same object. By default, when a new object is created, SQL Server stores
the first eight object pages in mixed extents. After that, all subsequent space
allocation for that object is done with uniform extents.

You can disable mixed extents allocation with server-level trace flag T1118.
In SQL Server 2016 and above, you can control it on the database level
with MIXED PAGE ALLOCATION database option. Turning mixed
extents off will reduce the number of modifications in the system tables
when a new table is created. In users’ databases, doing so rarely gives you
noticeable benefits; however, it may significantly improve tempdb
throughput in busy OLTP systems. You can disable mixed extents allocation
with trace flag T1118 in old versions of SQL Server (prior to 2016). From
SQL Server 2016 on, tempdb stopped using mixed extents, so you don’t
need to enable that trace flag in the system.

Next, let’s look at the structure of the indexes.

B-Tree Indexes

www.datasense.ir

Clustered and nonclustered indexes have a very similar internal format
called B-Tree. Let’s create an example table called Customers, defined in
Listing 5-1. The table has the clustered index defined on Customerld and
nonclustered index on Name columns.

Example 5-1. Customers table

CREATE
(

TABLE dbo.Customers

CustomerId INT NOT NULL,
Name NVARCHAR (64) NOT NULL,
Phone VARCHAR (32) NULL,

/*
) ;
CREATE

ON dbo.

CREATE
ON dbo

Other Columns */

UNIQUE CLUSTERED INDEX IDX Customers CustomerId
Customers (CustomerId) ;
NONCLUSTERED INDEX IDX Customers Name

.Customers (Name) ;

www.datasense.ir

CONSTRAINTS VERSUS INDEXES

As you may have noticed, I defined the clustered index on the table
instead of creating the primary key constraint. I did this on purpose. |
always consider constraints to be the part of a logical database design,
which defines entities and their key attributes. Indexes, on the other
hand, belong to the physical database design and physical data
structures of the database.

By default, SQL Server creates unique clustered indexes for primary
key constraints. However, you can—and in many cases should—mark
primary keys as nonclustered, which will make them unique
nonclustered indexes.

With the exception of a few SQL Server features that require you to
define primary keys, the choice between constraints and indexes is a
matter of personal preference. Primary and unique constraints are
implemented as indexes internally and behave the same. During
performance tuning, you’ll work with indexes, so I am not going to
reference constraints in this book. Their absence from the discussion
does not mean that you should not use constraints in your databases.

The logical structure of the clustered index is shown in Figure 5-2.

www.datasense.ir

esesnull) 1170
B L
B3 132 oot
| Level
53 Llleesenden,
,"‘ "' ""n
' ! s
n" ll “‘
K . [A
4
() o117 B0 15 | 99533 1:6945
Bty 368 1:1724
e) VoOL[35 Lo 9201 41:702 Level
M1 93710/ 1:70224,
! ' \
’v' Y ‘l‘ \J ¥ "‘ \“
r' : t' “‘
] | ,‘ \
' ! '
) V. . Y Y
1 Victor 6 Perry 93701 Kevin 93710 Serg
2 Brian 7 Boris 93702 Mike 93711 John Leaf
3 Lisa B Ashley 93705 Andy LEVE'
4 Dmitri 9 Alyson 93707 Bob
5 Anton 10 Greg 93708 Mary
Y] v]

Figure 5-2. B-Tree index

The bottom level of the index is called the leaf level. It stores the data
sorted according to the index key value. If it is a clustered index, the leaf
level stores all data from the table sorted based on the clustered key. To be

exact, the leaf level includes IN_ ROW data only, which may reference oft-
row column data on the other pages.

If all data in the index fits into a single data page, the index will consist of
that single leaf page. Otherwise, SQL Server will start to build infermediate
levels of the index. Each row on an intermediate level page references the
page from the level below and contains the minimal value of the key in the

www.datasense.ir

referenced page, as well as its physical address (Fileld:Pageld) in the
database. The only exception is the very first row, which stores NULL
instead of the minimal value of the key.

SQL Server continues to build intermediate levels until it ends with a level
with a single page. This level is called the root level; it 1s the entry point to
the index.

The pages on each level of the index are linked into the double-linked list.
Each page knows the previous and the next page in the index. This allows
SQL Server to scan the indexes forward and backward. (Keep in mind,
however, that the backward scan may be less efficient, since SQL Server
does not use parallelism during that operation.)

SQL Server can access data in the index either through index scan or index
seek. With scans, there are two ways SQL Server can do that.

The first is an allocation order scan. SQL Server tracks the extents that
belong to each index in the database through system pages called Index
Allocation Maps (IAM). It reads the data pages from the index in random
order according to index allocation data. This method, however, could
introduce data consistency problems and is rarely used.

The second, more common method is called an ordered scan. Let’s assume
that you want to run the SELECT Name FROM dbo.Customers query. All
data rows reside on the leaf level of the index and SQL Server can scan it
and return the rows to the client.

SQL Server starts with the root page of the index and reads the first row
from there. That row references the intermediate page with the minimum
key value from the table. SQL Server reads that page and repeats the
process until it finds the first page on the leaf level. Then SQL Server starts
to read rows one by one, moving through the linked list of the pages until
all rows have been read (Figure 5-3).

www.datasense.ir

Figure 5-3. Index scan

o=) _E170
Lot 3/ L7
,o° 13 L1342
)
‘I‘
o 93533 1:1221
'f
L
’0
" & A FY
(null) 1:176 350 1:945 93533 1:6945
b & LIT7 357 1:946 93540 1:6946
13, 117 368 1:1724
. 375 1:947 93701 1:7022
M4 1044 93710 1:7022
1
! ¥ ¥ ¥
L}
I T T I T R
[] e
) A A A A
1 victor 6 Perry 93701 Fevin 93710 Serg
2 Brian 7 Boris 93702 Mike 93711 John
3 Lisa 8 Aashley 93705 Andy
4 Dmitri 9 Alysen 93707 Beb
5 Anton 10 Gregq 93708 Mary
v v y v

Obviously, in real life, it may become more complicated. In some cases, a
query may simultaneously scan multiple parts of the index with parallel
execution plans. In others, SQL Server may combine multiple index scans
of simultaneously running queries together into the single physical index
scan. Nevertheless, when you see the Index Scan operator in the execution
plan, you can assume that this operator will access all data from the index.

There is one exception, however: when the plan has an index scan
immediately following the 7op operator. In that case, the scan operator will
stop after it returns the number of rows requested by TOP and will not
access the entire table. Usually, this happens if your query does not have an
ORDER BY clause, or if the ORDER BY clause matches the index key.

Figure 5-4 shows part of the execution plan of SELECT TOP 3 Name
FROM dbo.Customers ORDER BY Customerld query. The Number of

www.datasense.ir

Rows Read and Actual Number of Rows properties in the Index Scan
operator indicate that the scan stopped after it read three rows.

Figure 5-4. Top and Index Scan operators
SELECT TOP 3 Name FRON dbo.Customers ORDER BT CustowerId

i
Top Clustered Index Scan {Clustered)
[Customers]. [IDX Customers Custonmer..
SELECT C’DDS':D:UDE':) Cost: 100 %
Cost: O % 3 of Uémgs Clustered Index Scan (Clustered)
3 (1004} , ':l;U%:' Scanning a clustered index, entirely or only a range,

Mumber of Rows Read 3
Actual Number of Rows for All Executions 3
Object
[BAD].[dbo] [Custormers). [IDX_Custormers_Customerd]

Top and Index Scan operators

As you can imagine, reading all data from the large index is an expensive
operation. Fortunately, SQL Server can access subset of the data by using
the index seek operation. Say you want to run the following query: SELECT
Name FROM dbo.Customers WHERE Customerld BETWEEN 4 AND 7.
Figure 5-5 illustrates how SQL Server might process it.

www.datasense.ir

Figure 5-5. Index seek

eeeefnull)_1170
Lot ® L7l
o 813 11342
*
J'
K 03333 11271
L
,l
’
" A& & A
(null) 1:176 350 1:945 93533 1:6945
f 4 1177 357 1:946 93540 1:6946
13) 1 368 1:1724
e ! 375 1:947 93701 1:7022
My 194 93710 1:7022
1
It | 3 . ¥ ¥
I
I .
| 3 ‘A A A A
1 victor B Terry 93701 Kevin 93710 Serg
2 Brian M " Boris 1 93702 Mike 93711 John
3 Lisza 8 Ashley 93705 Andy
W iRy 9 Alysen 93707 Bob
o, MOS0 10 Greg 93708 Mary
v v 4 v

In order to read the range of rows from the table, SQL Server needs to find
the row with the minimum value of the key from the range, which is 4. SQL
Server starts with the root page, where the second row references a page
with a minimum key value of 350. That is greater than the key value you’re
looking for, so SQL Server reads the intermediate-level data page (1:170)
referenced by the first row on the root page.

Similarly, the intermediate page leads SQL Server to the first leaf-level
page (1:176). SQL Server reads that page, then it reads the rows with
Customerld equal 4 and 5, and finally, it reads the two remaining rows from
the second page.

Technically speaking, there are two kinds of index seek operations:

Point-lookup

www.datasense.ir

The first is called a point-lookup (or, sometimes, singleton lookup)
where SQL Server seeks and returns a single row: for example, the

WHERE Customerld = 2 predicate is point-lookup operation.

Range scan

The other type is called a range scan. It requires SQL Server to find the
lowest or highest value of the key and scan the set of rows (either
forward or backward) until it reaches the end of the scan range. The
predicate WHERE Customerld BETWEEN 4 AND 7 leads to the range
scan. Both cases are shown as Index Seek operators in the execution

plans.

As you can guess, index seek is more efficient than index scan because SQL
Server usually processes just a subset of rows and data pages, rather than
scanning the entire index. However, the Index Seek operator in the
execution plan may be misleading and represent an inefficient range scan
that reads a large number of rows, or even the entire index. I will talk about
this condition later in the chapter.

There 1s a concept in relational databases called SARGable predicates,
which stands for Search Argument-able. SARGable predicates allow SQL
Server to isolate a subset of the index key to process. In a nutshell, with
SARGable predicate, SQL Server can determine a single key value or a
range of index key values to read during a predicate evaluation and utilize
Index Seek operation when the index exists.

Obviously, it is beneficial to write queries using SARGable predicates and
utilize index seek whenever possible. This is done using operators, which
include =, >, >=, < <=, IN, BETWEEN, and LIKE (for prefix matching).
Non-SARGable operators include NOT, <>, LIKE (when not prefix
matching), and NOT IN.

www.datasense.ir

Predicates are also non-SARGable when using functions (system or non-
inlined user-defined) against the table columns. SQL Server must call the
function for every row it processes to evaluate the predicate. This prevents
you from using an index seek.

The same applies to data type conversions where SQL Server uses the
CONVERT _IMPLICIT internal function. One common example is using
the Unicode nvarchar parameter in the predicate with a varchar column.
Another case is when you have different data types in the columns that
participate in the join predicate. Both cases could lead to an index scan,
even when the predicate operator appears to be SARGable.

Composite Indexes

Indexes with multiple key columns are called composite indexes. The data
in the composite indexes is sorted per column, from left to right. Figure 5-6
shows the structure of a composite index defined on LastName and
FirstName columns in the table. The data is first sorted based on LastName
(the leftmost column), then on FirstName within each LastName value.

www.datasense.ir

oot (null) (null) 1:1723
Root
Level
/! Weber David 1:174lems,
["‘“
c" ."\
r' “\
4 A L 4
jnull) (null) 1:1936 Weber David 1:2108
J[Clark Steve 1:1937 e, fack David 1:2312
' "u. \‘
1 L
] ‘\ ‘\ i
! \ \ Intermediate
] “ \
! \ \ Level
1 \ h
X \J \L Y
' \
i \ \
| | \
1‘ ‘ ‘
“ A * A A i
Anders Andrew Clark Steve fack David
Andres Peter Connelly Michael . lack lisa
Ashton Lisa Connelly Peter Zhen Chang Leaf
Atkins John LEVE|
Atkins Mary
Atkins Tom
Y Y y

Figure 5-6. Composite indexes

The SARGability of a composite index depends on the SARGability of the
predicates on the leftmost index columns, which allow SQL Server to
determine and isolate the range of the index keys to process.

Table 5-1 shows examples of SARGable and non-SARGable predicates,
using the index from Figure 5-6.

www.datasense.ir

N 39 < v

~

N o v

~

O 0 8§ 240 v w U ST OV ORI

www.datasense.ir

A N R e S Q:UAEQQ.S

SARGable predicates Non-SARGable predicates

LastName

= ‘Clark’

AND

FirstName = ‘Steve’

LastName

= ‘Clark’

AND

FirstName <> ‘Steve’

LastName
<> ‘Clark’

AND

FirstName = ‘Steve’

LastName

LIKE '%

ar

0!

AND

FirstName = ‘Steve’

www.datasense.ir

LastName FirstName = ‘Steve’
= ‘Clark’

LastName
LIKE ‘Cl1%'

Nonclustered Indexes

While a clustered index specifies how data rows are sorted in a table,
nonclustered indexes define a separate sorting order for a column or set of
columns, storing them as separate data structures.

Think about a book, for example. Its page numbers represent the book’s
clustered index. The term index—that’s the one labeled “Index” at the end
of the book—Tlists terms from the book in alphabetical order. Each term
references the numbers of each page where the term is mentioned. It is thus
a nonclustered index of the terms.

When you need to find a term in the book, you can look it up in the term
index. It is a fast and efficient operation, because terms are sorted in
alphabetical order. Next, you can quickly find the pages on which the terms
are mentioned using the page numbers specified there. Without the term
index, your only choice would to read the entire book, page by page, until
you find all references to the term.

As I have noted, clustered and nonclustered indexes use a similar B-Tree
structure. Figure 5-7 shows the structure of a nonclustered index (right) on
the Name column we created in Listing 5-1. It also shows the clustered
index (left), for reference.

www.datasense.ir

(null) (null) 1:5011
olndl) 1170
Cered ;20) o ST G 15013 oncktared
Lstere Ay ; /! onciustere
s 13 118 J
Index P Index
! LLLLTT !
il B Ll : Steve 43233 1:5017 seme,
i * N
[}) I \
Y i]
4 . R Y . .
) o106 G Les o(null) (null) 1:5025 Steve 43233 1:10965
b, 9500 1:606 fllosls $E 13026
B, ; \
wi } ! g !)
TR e ! " fie Wt nian
| . T, irom 125 14083 Teta 6594 1:121724,
—‘.‘—ﬁ—‘ | 4 W | ¥ + y "
[i \ ! ' \
f H '] | \
i \ ' \ | 1
[i ' i i i
4 | \ |
3 \ N | « v \ L 4 4 *
1Vietor ... ||6 Perry ... 93710 Serg ... Aaren 55 Boris 93712 fina 6534
2 Brian ... | |7 Boris ... 93711 John ... Alyson § Brian 2 Zing 32121
3Lisa ... ||B Ashley ... 93712 Boris ... Alyson 756 Tohan 20121
4 Dmitri ... | |9 Alyson ... Carl 476
5Anten ... | |10 Greg ... Boris 1 carl 83011
Y 3 b ¥ b b

Figure 5-7. Clustered and nonclustered indexes in Customers table

The leaf level of the nonclustered index is sorted based on the value of the
index key (Name). Every row on the leaf level includes the key value and
row-id value. For tables with a clustered index, row-id represents the value
of the clustered index key of the row.

This is a very important thing to remember: nonclustered indexes do not
store information about physical row location when a table has a clustered
index defined. They store the value of the clustered index key instead. This
also means that nonclustered indexes include the data from clustered index
key columns even if you don t explicitly add those columns to the index
definition.

Like clustered indexes, the intermediate and root levels of nonclustered
indexes store one row per page from the level they reference. That row

www.datasense.ir

consists of the physical address and the minimum value of the key from the
page. In non-unique indexes, it also stores the row-id of such a row.

Let’s look at how SQL Server uses nonclustered indexes. I’ll run the
following query: SELECT Name, Phone FROM dbo.Customers WHERE
Name = ‘Boris’. Figure 5-8 shows that process.

red = '_"'“”'*-‘
Clustered ['me r=TTEET Nonclustered
Index s 1 P M0 2 100 Index
B3 1032 i
o N ¥.. 4" read /
h f 513 117 essned » Key Loaku, '
5iead Lo TN {opgmrhnf L Steve 43233 1:5017.eee.,
/ ' LNy, :' "‘.
. * 4 i l‘\‘. Y 4 i Al
(nall) 117 —_ 1~5945~\ p(oull) (null) 1:5025 Steve 43233 1:10965
6 117 93500 1:6946 | s j|eeEs WL L0k
By, ".‘ ! \
1] .
'3'4'_'1." PR :gm ::g:i K\ : ' Vic %21 11217
) \ VRSN, v o' imem 125 1:4033 feta 6594 1:12172
_‘_ﬁ'_] —_ Yo I] "
' ' LA LI ¥ : \
‘J 1. " \ L] \ []
' V6 read 1 3% read ! [
A H ' ‘.‘. H !
| 4 ¥ i 1 4 Y A Y. 4 4 *
1]
1 Victor 6 Perry ... 93710 Serg ... Al{ron 55 Boris 93712 Zina 6534
2 Brian 7 Boris ... 93711 John ... Alysen 9 Brian 2 fing 32121
3 Lisa 8 Ashley ... 93712 Boris ... Mﬁpon 756 Zohan 20121
4 Dmitri 9 Alyson ... N carl 476
5 Anten 10 Greg Boris 1 Carl 83011
¥ #: 3 : b ? ® ¥ Y 3 3 ? 9

Figure 5-8. Nonclustered Index Usage: Part 1

Similar to the clustered index, SQL Server starts with the root page of the
nonclustered index. The key value Boris is less than Dan, so SQL Server
goes to the intermediate page referenced from the first row in the root-level

page.
The second row of the intermediate page indicates that the minimum key
value on the page is Boris, although the index had not been defined as
unique and SQL Server does not know if there are other Boris rows stored
on the first page. As a result, it goes to the first leaf page of the index and
finds the row with the key value Boris and row-id equaling 7 there.

www.datasense.ir

In our case, the nonclustered index does not store any data besides
Customerld and Name, and SQL Server needs to traverse the clustered

index tree and obtain the data for Phone column from there. This operation
is called key lookup (RID lookup in heap tables).

In the next step shown in Figure 5-9, SQL Server comes back to the
nonclustered index and reads the second page from the leaf level. It finds

another row with the key value Boris and row-id of 93712, and it performs
key lookup again.

Clustered (o 10 ' et mall) (mall) 1:5003 Nonclustered
* = * = * P
Index ,.."' B 1 "‘. & read '*..‘ - Dan 4321 1:5013 Index
‘,‘ B3 11342 (Key Laokup “;"'
7 operation) g .
' 9B 112", N 17 b
i “‘.\Sﬁmﬂﬂ :. \‘Stm 43233 1:5017 = .,
4 s, i \‘ *
4 4 . 4 A Y VoA 4 . |
(nall) #1176 0533 106945 (null) (null) 1i5025‘ Steve 43233 1:10965
6 S, 93540 1:6946 fcia ML L0260
BoSumy

93701 1:7022

L]
, ! \ Vie 3421 1:12171
LI s 4 b []
3’“.' 1 LU R " 10" read tom 125 1:40d3 | feta 6594 1:12172s,
= S A A e -
A i L
J‘ ‘.] ?'p, 'I : .n
] L]
s ‘I 'l muﬂ-" """"" ""' 1 ‘l
n *a Ll
¥ Y . 4 « Y « Y4 1 « ¥
'
1 Vieter 6 Perry ... 83710 Serg ... Baron 55 Boris 93712 Zina 653
2 Brian 7 Boris ... 93711 Jehn ... Alyson 9 Brian 2 Zing 32121
3 Lisa 8 Ashley ... 93712 Boris ... Alyson 756 : Zohan 20121
4 Dmitri 9 RAlyson ... s carl 476
5 Anton 10 Greg Boris 7 Carl 8301l
¥ 3 [: ; ¥ 13 g 3

Figure 5-9. Nonclustered Index Usage: Part 2

As you can see from Figure 5-9, SQL Server had to perform 10 reads even

though query returned just two rows. The number of I/O operations can be
calculated based on the following formula:

(# of levels in nonclustered index) + (number of pages read from the leaf

level of nonclustered index) + (number of rows found) * (# of levels in
clustered index)

www.datasense.ir

A large number of rows found (key lookup operations) leads to a large
number of I/O operations, which makes using a nonclustered index
inefficient.

As aresult, SQL Server 1s very conservative in choosing nonclustered
indexes when it expects that a large number of key lookup operations will
be required. It may choose to scan a clustered or another nonclustered index
instead. The threshold when SQL Server decides not to use a nonclustered
index with key lookup varies, but it is very low — often a fraction of a
percent of the total number of rows in the table.

The same applies to RID lookup operations. Nonclustered indexes in heap
tables store physical address of the row in row-id. Technically, SQL Server
can access the row in a heap though the single read operation; however, it is
still expensive. Moreover, if the new version of the row does not fit into the
old data page during an update, SQL Server will move it to another place,
referencing it through another structure called forwarding pointer, which
contains the address of the new (updated) version of the row. Nonclustered
indexes will continue to reference forwarding pointers in row-id, and the
RID lookup may lead to multiple read operations to access the row.

Index Fragmentation

SQL Server always maintains the order of the data in the index, inserting
new rows on the data pages to which they belong. If the data page does not
have enough free space, SQL Server allocates a new page and places the
row there, adjusting the pointers in the double-linked page list to maintain
logical sorting order in the index. This operation is called page split, and it
leads to index fragmentation, as you’ll see in this section.

Figure 5-10 illustrates this condition. When the original page does not have
enough space to accommodate the new row, SQL Server performs a page
split, moving about half of the data from original page to the new page and
adjusting page pointers afterward.

www.datasense.ir

ATRTRTRTRTETRATRTR ATRETRTR

Internal Fragmentation

Original
Page

Figure 5-10. Page split

Page splits can also occur during data modifications. When an update
cannot be done in place—for example, during a data row size increase—
SQL Server performs a page split and moves updated and subsequent rows
from that page to another page. It maintains the index sorting order through
the page pointers.

There are two kinds of index fragmentation — internal and external.

External fragmentation

External fragmentation means that the logical order of the pages does
not match their physical order in the data files, and/or that logically
subsequent pages are not located in the same or adjacent extents.
External fragmentation forces SQL Server to jump around while reading
the data from the disk, which makes read-ahead less efficient and
increases the number of physical reads required. The impact is higher
with magnetic drives where random 1/O is less efficient than sequential
I/O.

www.datasense.ir

Internal fragmentation

Internal fragmentation, on the other hand, means that data pages in the
index have free space. As a result, the index uses more data pages to
store data, which in turn increases the number of logical reads during
query execution. In addition, SQL Server uses more memory in the

buffer pool to cache index pages.

A small degree of internal fragmentation is not always bad. It reduces page
splits during insert and update operations, when data is inserted into or
updated in different pages in the index. A large degree of internal
fragmentation, however, wastes index space and reduces the performance of
the system.

You can analyze index fragmentation in the system with
sys.dm_db index physical stats view. The three most important columns
from the result set are:

avg page space used in_percent
avg page space used in percent shows the average percentage of the

data storage space used on the page. This value shows you the internal

index fragmentation.

avg fragmentation_in_percent

avg fragmentation in_percent provides you with information about
external index fragmentation. For tables with clustered indexes, it
indicates the percent of out-of-order pages when the next physical page
allocated in the index is different from the page referenced by the next-

page pointer of the current page. For heap tables, it indicates the percent

www.datasense.ir

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-index-physical-stats-transact-sql

of out-of-order extents, when extents are not residing continuously in

data files.

fragment count

fragment count indicates how many continuous data fragments the
index has. Every fragment constitutes the group of extents adjacent to
each other. Adjacent data increases the chances that SQL Server will

use sequential I/O and Read-Ahead while accessing the data.

The impact of index fragmentation can be offset by modern hardware, when
servers have enough memory to cache the data in the buffer pool and fast
flash-based I/0 subsystems to read the data. While it is always beneficial to
reduce fragmentation in the system, you need to analyze its impact when
designing your index maintenance strategy.

To put things in perspective: If your system has low-activity hours during
nights or weekends, use them for index maintenance. However, if your
system handles thousands of transactions per second around the clock, do
the analysis and estimate the benefits and downsides of different index
maintenance strategies. Remember that index maintenance is an expensive
operation and will add overhead to the system while it’s running.

There are two index maintenance methods that reduce fragmentation: index
reorganize and index rebuild. Let’s look at each in turn.

Index reorganize
Index reorganize, often called index defragmentation, reorders leaf-level
data pages into their logical order. It also tries to compress pages,
reducing their internal fragmentation. This is an online operation that

can be interrupted at any time without losing the operation’s progress up

www.datasense.ir

to the point of interruption. You can also reorganize indexes with the
ALTER INDEX REORGANIZE command.

Index rebuild
Index rebuild (ALTER INDEX REBUILD), on the other hand, creates

another copy of the index in the table. It is an offline operation, which
will lock the table in non-Enterprise editions of SQL Server. In the
Enterprise edition it can be done online, though it will still require a

short table-level lock at the beginning and end of execution.

Microsoft documentation recommends rebuilding indexes if their
external fragmentation (avg_fragmentation_in_percent) exceeds 30%
and reorganize indexes for fragmentation between 5% and 30%. You
can use those values as a rule of thumb; however, as I mentioned, it may

be better to analyze and tune for your own use-cases.

Pay attention to the FILLFACTOR index property, which allows you to
reserve some free space during index creation or rebuild, reducing page
splits afterwards. Unless you have an ever-increasing append-only index,
you should set FILLFACTOR below 100%. I usually start with 85 or 90%
and fine-tune the values to get the least internal and external fragmentation
in the index.

Finally, in heap tables, sys.dm_db index physical stats view provides the
information about forwarding pointers with the forwarded record count
column. Tables with a large number of forwarding pointers are inefficient
and need to be rebuilt with the ALTER TABLE REBUILD operation.
However, the better option in most cases is converting them into clustered
index tables.

www.datasense.ir

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/reorganize-and-rebuild-indexes

NOTE

Ola Hallengren has provided a set of scripts that have become the de facto standard for
database maintenance tasks. Consider using them in your systems.

Statistics and Cardinality Estimation

SQL Server stores information about data distribution in the index in
internal objects called statistics. By default, SQL Server creates statistics
for each index in the database and uses it during query optimization. Let’s
look what information is stored in the statistics first.

Listing 5-2 creates a table with clustered and nonclustered indexes and
populates it with some data. Finally, it provides information about the
statistics using the DBCC SHOW _STATISTICS command.

Example 5-2. Examining statistics

CREATE TABLE dbo.DBObjects
(
ID INT NOT NULL IDENTITY (1,1),
Name SYSNAME NOT NULL,
CreateDate DATETIME NOT NULL
) ;
CREATE UNIQUE CLUSTERED INDEX IDX_DBObjectS_ID
ON dbo.DBObjects (ID);

INSERT INTO dbo.DBObjects (Name,CreateDate)
SELECT name, create date FROM sys.objects ORDER BY name;

-- Creating some duplicate wvalues

INSERT INTO dbo.DBObjects (Name, CreateDate)
SELECT tl.Name, tl.CreateDate
FROM dbo.DBObjects tl CROSS JOIN dbo.DBObjects t2
WHERE tl1.ID = 5 AND t2.ID between 1 AND 20;

CREATE NONCLUSTERED INDEX IDX DBObjects Name CreateDate
ON dbo.DBObjectsName, CreateDate);

DBCC
SHOW STATISTICS ('dbo.DBObjects', 'IDX DBObjects Name CreateDate');

www.datasense.ir

https://ola.hallengren.com/

Figure 5-11 shows the output of the listing (you may get different results in
your system).

Figure 5-11. Statistics

Name Updated Rows Rows Sampled Steps Denaly
1 DX DBObjects Name CreateDate Mar 62021 340M 137 1% 1 1

Averaoe key length Stnglndex Fiter Expression Unfibered Rows Perssted Sample Prcent
124563 TS HULL 13 I

Al densty AverageLengh Columng

..

(A NEE e

2 000347009 35435 Name, Createllate
0007882 424%%h Name, Createllate, I

RANGE_HI_KEY RANGE_ROWS EU_ROWS DISTINCT_RANGE_ROWS AVG_RANGE_ROWS

1 CommandEvecle 0 1 [1
2 LommandLog | 1 [1
3 DBObects I 1 I 1
4 DatabaseBackup [1 [1
5 DatabaselteqiyCheck 0 i [1
b EvertNoticatonEnar., 0 1 [1
T Marepication_optons 1 1 1 1

As you can see, the DBCC SHOW_STATISTICS command returns three
result sets. The first contains general metadata information about statistics,

such as name, update date, number of rows in the index at the time when
the statistics were updated, and so on.

The second result set, called density vector, contains information about
density for the combination of key values from the statistics (index). It is
calculated based on the formula (1 / number of distinct values), and it
indicates how many rows on average every combination of key values has.
It is worth noting that although IDX DBObjects Name CreateDate index
has two index keys, row-id (clustered index column)- ID- also presents in
the index and 1s returned in the density vector.

The last and most important result set is called the histogram. It provides
information about data distribution in the index. Each record in the
histogram, called a histogram step, includes the sample key value from the
left-most column from the statistics (index) and information about data
distribution in the interval of values from the preceding to the current
RANGE HI KEY value. It also includes the estimated number of rows in
the interval (RANGE_ROWS), number of rows with key value equal to
RANGE HI KEY (EQ_ROWS), number of distinct key values in the
interval (DISTINCT _RANGE _ROWS), and average of rows per distinct
key values (AVG_RANGE ROWS).

SQL Server uses statistics information during query optimization estimating
the number of rows that each operator in the execution plan would process
and return to the next operator there. That process is called cardinality
estimation.

Cardinality estimation greatly affects the execution plan. SQL Server uses it
to choose the sequence of operators in the plan, indexes to access the data,
type of join operators, and many other things. The efficiency of its
execution plans greatly depends on the correctness of its cardinality
estimation, and therefore on accurate statistics in the system.

There are three things you need to remember about statistics. First, and
most important, SQL Server maintains the histogram and has information
about data distribution only for left-most column of the index. There is no

www.datasense.ir

information about data distribution for other index columns or for
combinations of index column values.

The common advice you’ll hear suggests using the most selective column
as the left-most column in the composite indexes. While following this
advice may sometimes improve the quality of cardinality estimations, don’t
follow it blindly. You need to analyze the queries, making sure that the
predicates in left-most columns are SARGable and support efficient index
seek operations.

The second important thing to remember about statistics is that the
histogram stores, at most, 200 steps, regardless of the table size and whether
the table is partitioned or not. This can affect cardinality estimations in
large tables with uneven data distribution, since each step stores
information about larger key intervals.

Finally, you need to know how SQL Server updates statistics. In databases
with a compatibility level below 130 (as of SQL Server 2016), statistics are
only updated automatically after 20 percent of the data in the index has
changed. For example, in a table with 100 million rows, you would need to
insert, delete or update index key columns in 20 million rows before an
automatic update is triggered. This means that in large tables, statistics are
rarely updated automatically and tend to become inaccurate over time.

Starting with a database compatibility level of 130, the statistics update
threshold becomes dynamic. The percentage of changes that triggers the
statistics update becomes smaller as the amount of the data in the table
grows. You can force the same behavior for databases with older
compatibility levels and in old versions of SQL Server with trace flag
T2371. This 1s one of the trace flags I enable in every system.

Statistics Maintenance

Accurate, up-to-date statistics improve system performance. Analyze your
statistics maintenance strategy when you perform system troubleshooting,
and validate whether it provides you with accurate information.

www.datasense.ir

You can rely on automatic statistics updates, maintain statistics manually, or
combine both approaches. Index maintenance also affects statistics
maintenance strategy, since index rebuild automatically updates statistics in
the index. Index reorg, on the other hand, does not update it.

You can control whether SQL Server creates and updates statistics
automatically at the database level with the Auto Create Statistics and Auto
Update Statistics database options. When these are enabled, SQL Server
automatically maintains statistics on all indexes except those that have
STATISTICS NORECOMPUTE enabled (it is disabled by default).

SQL Server may use different methods to update statistics. By default, it
just samples the data from the index. This approach is lightweight, but it
does not always provide accurate results. Alternatively, you can update
statistics using the UPDATE STATISTICS WITH FULLSCAN statement,
which will read the entire index.

You can also update the statistics specifying percent or number of rows to
sample with UPDATE STATISTICS WITH SAMPLE statement.
Obviously, the more data you read, the more I/O overhead you’ll have on
large indexes.

During query compilation, SQL Server detects whether statistics are
outdated and may update them synchronously or asynchronously, based on
the selected Auto Update Statistics Asynchronously database option. With
synchronous updates, Query Optimizer defers query compilation until the
update 1s done. With asynchronous updates, the query is optimized using
old statistics while statistics are updated in background. You can keep your
default synchronous statistics update unless your system requires extremely
low response time from the queries.

The default automatic statistics maintenance is acceptable in many cases, as
long as the database has a compatibility level of 130 or above, or T2371 is
set. However, in some cases, you can also update statistics of the key
indexes manually and/or run statistics update with FULLSCAN after hours.

It is usually beneficial to update statistics on the filtered indexes manually.
Modifications of filtered columns do not count towards the statistics update

www.datasense.ir

threshold, which may make automatic statistics maintenance inefficient.

NOTE

Filtered indexes allow you to filter subsets of data in the table, reducing index size and
index maintenance cost. Read about them in the Microsoft documentation.

Listing 5-3 shows you how to view statistics properties, such as when
statistics were last updated and how many changes in the data have
occurred since the last update. You can use it as part of your custom
statistics maintenance in the system, if needed.

Example 5-3. Analyzing statistics properties

SELECT
s.stats id AS [Stat ID]
,Sc.name + '.' + t.name AS [Table]

,S.name AS [Statistics]
,p.last updated
,P.rows
,P.rows_sampled
;p.modification counter AS [Mod Count]
FROM
sys.stats s JOIN sys.tables t ON
s.object id = t.object id
JOIN sys.schemas sc ON
t.schema id = sc.schema id
OUTER APPLY
sys.dm db stats properties(t.object id,s.stats id) p
ORDER BY
p.last updated

NOTE

This section barely scratches the surface of statistics and their maintenance—I strongly
recommend reading the Microsoft documentation to learn more about it.

Cardinality Estimation Models

www.datasense.ir

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/statistics/statistics

As you already know, the quality of query optimization depends on accurate
cardinality estimations. SQL Server must correctly estimate the number of
rows in each step of query execution to generate an efficient execution plan.
Accurate statistics go a long way in improving the estimations; however,
they are just part of the picture.

During the cardinality estimation process, Query Optimizer relies on a set
of assumptions that cover, among other things:

e data distribution in the tables

e the impact of different operators and predicates on the size of the
output

 relations between multiple predicates in a single table
e correlation of the data in multiple tables during joins

These assumptions, along with cardinality estimation algorithms, define the
cardinality estimation model used during optimization.

The original (legacy) cardinality estimation model was initially developed
for SQL Server 7.0 and used exclusively until the release of SQL Server
2014. Aside from some minor improvements across versions, the model
remained conceptually the same.

In SQL Server 2014, Microsoft released a new cardinality estimation model
enabled in the databases with compatibility level of 120. That model uses
different assumptions, which lead to different cardinality estimations and
execution plans.

It is impossible to tell which model is better. Some queries behave better
with the new model; others may regress when you upgrade. You can
continue to use the legacy cardinality estimation model with new versions
of SQL Server; however, it may be beneficial to upgrade at some point.
Microsoft says it is not going to remove legacy model from SQL Server in
the future, but it won’t be enhanced, either.

www.datasense.ir

Unfortunately, that’s easier said than done, especially in large and complex
systems. Changing the model may lead to massive changes in the execution
plans, so you need to be prepared to detect and address regressions quickly.
Fortunately, Query Store can simplify the process. You can collect the data
before the change and force SQL Server to use old execution plans for those
queries that regressed under the new model. Obviously, you’ll still need to
analyze and optimize them later.

You can control the cardinality estimation model with the database
compatibility level. Keep in mind that new model may behave slightly
differently in each compatibility level, starting with 120 (SQL Server 2014).
Legacy models, on the other hand, will behave the same in each SQL
Server version. Enabling the QUERY OPTIMIZER HOTFIXES database
setting or setting T4199 may also affect the estimations.

In SQL Server 2014, you can control the model with database compatibility
levels or with trace flags. T2312 and T9481 force SQL Server to use new
and legacy models respectively ignoring database compatibility level. In
SQL Server 2016 and above, you can choose the model by setting the
LEGACY_ CARDINALITY_ ESTIMATION database option.

When you perform the SQL Server version upgrade, I recommend doing it
in phases to reduce the risk of regression. First, upgrade the server version,
keeping the old cardinality estimation model in place. Validate that
everything works as expected after the upgrade. Then you can consider
changing the model. As mentioned, use Query Store as part of that process.

As a general rule, I do not recommend switching to the new cardinality
estimation model in SQL Server 2014. I encountered several bugs in early
builds of this version, which led to more regressed queries. If you do
switch, install the latest service pack, enable T4199 and carefully test the
system.

Analyzing Your Execution Plan

www.datasense.ir

The query optimization process in SQL Server, done by the Query
Optimizer, generates a query execution plan. This plan consists of multiple
operators that access and manipulate the data, achieving results for the
query. The query tuning process, in a nutshell, requires us to analyze and
improve execution plans for the queries.

Even though every database engineer is familiar with execution plans, I’d
like to discuss several things related to query tuning. First, we need to look
how SQL Server executes operators in the plan.

Row Mode and Batch Mode Execution

SQL Server has two processing methods for queries. The default, row
mode, 1s traditionally used with row-based storage and B-Tree indexes. In
this mode, each operator in the execution plan processes data rows one at a
time, requesting them from child operators when needed.

Let’s look at the simple example query shown in Listing 5-4.

Example 5-4. Row mode execution: Sample query

SELECT TOP 10 c.CustomerId, c.Name, a.Street, a.City, a.State,
a.zZipCode
FROM
dbo.Customers ¢ JOIN dbo.Addresses a ON
c.PrimaryAddressId = a.AddressId
ORDER BY
c.Name

This query would produce the execution plan shown in Figure 5-12. SQL
Server selects all of the data from the Customers table, sorts it based on the
Name column, gets the first 10 rows, joins it with the Addresses data, and
returns it to the client.

www.datasense.ir

09, Sort data

after al rows 08, Return row
15 Returnrow 14, Refurn row 13, Retum row were read \‘
\ \ \ 10, Retum row \ %
”] 08. Retun row :
7 = B \ 7 \ I
. Nested Loops ¢ . Clustered Index Scan (Clu:
SELECT Top Taner T)' ‘ Sort st I 5K Custonets
nner Joln ustomers], ustoners
Cogte 0% Cost: 0% st 0 4 Cost: 63 §] t_lﬁ% '
0st! ’ J 0t
04. GetRow) 05, GetRow(] f
”ﬁj 07, Gethon(
01, GetRow() 02. GetRow() 03, GetRow() L Clustered Index Seek (Cluster..

[Addresses]. [P Addresses] [a]

(' Cogt: 184
12, Retum row ,

11, GetRow()

Figure 5-12. Row mode execution: Getting the first row

Let’s analyze how SQL Server executes a query. The Select operator, which
is the parent operator in the execution plan, calls the GetRow() method of
the Top operator. The Top operator, in turn, calls the GetRow() method of
the Nested Loop Join.

A Join operator gets the data from two different inputs. First, it calls the
GetRow() method of the Sort operator. In order to sort, SQL Server needs to
read all of the rows first. So the Sort operation calls the GetRow() method
of the Clustered Index Scan operator multiple times, accumulating the
results. The Scan operator, which is the lowest operator in the execution
plan tree, returns one row from the Customers table per call. Figure 5-12
shows just two GetRow() calls, for simplicity’s sake.

When all of the data from the Customers table has been read, the Sort
operator performs sorting and returns the first row back to the Join operator,
which calls the GetRow() method of the Clustered Index Seek operator on

www.datasense.ir

the Addresses table after that. If there is a match, the Join operator
concatenates data from both inputs and passes the resulting row back to the
Top operator, which, in turn, passes it to Select.

The Select operator returns a row to the client and requests the next row by
calling the GetRow() method of the 7op operator again. The process repeats
until the first 10 rows are selected. All operators keep their state and the
Sort operator preserves the sorted data. It does not need to access the
Clustered Index Scan operator again, as shown in Figure 5-13.

25, Return row 24, Return row 23, Ratum row

\J \ j I \ @ 20 RE[‘IIF;{JW E ﬁy

_ ‘ Negted Loopg 0mn—n———— : Cluztered Index Scan (Clus
SELECT Top) - Sort . i
cost: { 4 Cost: 0 & I.ICnnE:C: JDOJ.;:I Cost: €3 4 [Custome:s(]j. [EK_Italsf:mers_
71 °H {' et
19, GetRow()
3 ‘J
16. GetRow() 17. GetRow() 18, GetRow() Clustered Index Seek (Cluster.

[Addresses). [PK_Addresses] [a]

{' cost: 18 %
22, Raturn row ’

21, GetRow()

Figure 5-13. Row mode execution: Getting the next row

Each operator in the execution plan has multiple properties, the names of
which may vary slightly in different versions of SSMS and in other
applications. Let’s look at the most important ones.

Actual Number of Rows and Number of Rows Read

Those two properties illustrate how many rows were returned by the
operator and how many rows were processed during execution. For
example, Index Scan operator with a predicate may process 1,000 rows,
filtering out 950 of them. In that case, the property would show 50 and

1,000 rows, respectively.

www.datasense.ir

Estimated Number of Rows and Estimated Number of Rows Read

Those two properties provide cardinality estimation data and indicate
how many rows Query Optimizer expected the operator to return and
process. The large discrepancy between estimated and actual metrics
indicates a cardinality estimation error, which could lead to a

suboptimal execution plan.

Number of Executions and Estimated Number of Executions

The Number of Executions metric indicates how many times the
operator was executed. It does not correspond to the number of
GetRow() calls but rather indicates how many times this part of the
execution plan was processed. For example, in the plan shown in
Figures 5-12 and 5-13, Clustered Index Scan in the Customers table
would be executed once, while Clustered Index Seek in the Addresses

table would be executed 10 times.

The Estimated Number of Executions metric shows the estimate used by

Query Optimizer.
Startup Predicate

In some cases, operators may have a Startup Predicate property, which
indicates the condition that needs to be met for the operator to execute.
For example, a WHERE @ProvideDetails = 1 clause may generate
Filter operator with Startup Predicate (@ProvideDetails = 1. The
execution plan subtree after the Filter operator may or may not be

executed, depending on the @ProvideDetails parameter in runtime.

www.datasense.ir

Unfortunately, row mode execution and per-row processing do not scale
well with large analytical queries that process millions or even billions of
rows. To address this, SQL Server 2012 introduced another execution
model, called batch mode execution. This allows operators in the execution
plans to process rows in batches. The process is optimized for large
amounts of data and parallel execution plans.

Until SQL Server 2019, Query Optimizer did not consider batch mode
execution unless at least one of the tables in the query had a columnstore
index. This restriction was removed in SQL Server 2019, where batch mode
can be used with row-based B-Tree indexes in databases with a
compatibility level of 150. This does not mean that all execution plans will
use batch mode; however, Query Optimizer will consider batch mode
during optimization.

As with any feature that affects execution plans, batch mode can introduce
regressions in some cases. You can enable and disable it on the database
level with the BATCH_MODE ON ROWSTORE database option or on
the query level with the ALLOW_BATCH MODE and
DISALLOW_BATCH_MODE query hints.

Finally, there is a trick that may enable batch mode execution on B-Tree
tables in SQL Server 2016 and 2017: You can create empty and filtered
nonclustered columnstore indexes on B-Tree tables that run large analytical
queries. For example, if the table has ID column that stores only positive
values, the following index will allow Query Optimizer to consider batch
mode during optimization: CREATE NONCLUSTERED
COLUMNSTORE INDEX NCCI ON T WHERE ID < 0.

You can see the operator’s execution mode with Actual Execution Mode
property in the execution plan. Actual Number of Batches will tell you how
many batches were processed. However, the query tuning strategy would be
the same regardless of the execution mode.

Live Query Statistics and Execution Statistics Profiling

www.datasense.ir

There are several tools that allow you to analyze execution plans. In
addition to the well-known SSMS, you can use another freeware tool from
Microsoft—Azure Data Studio. Despite the name, it works perfectly well
with on-prem instances of SQL Server and can be installed on other
operating systems besides Windows.

I consider Azure Data Studio to be targeted to developers rather than
database administrators. Nevertheless, it provides basic database
administration and tuning features and can be expanded with multiple third-
party extensions. Some extensions will even bring support of other database
platforms in addition to SQL Server.

I consider SentryOne Plan Explorer a must-have freeware tool for query
tuning. This tool focuses on execution plan analysis. I find it more
advanced and easier to use than SSMS. I suggest you download and test it if
you have not done so already.

SSMS has another very useful feature called Live Query Statistics. This
feature allows you to monitor query execution in runtime, detecting
possible inefficiencies in the execution plan.

Figure 5-14 shows an example of the Live Query Statistics window in
SSMS (screenshot is copied from Microsoft documentation). The operators
with solid lines have been completed. The dotted lines represent the tree of
the operators that are currently executing. You can also see the estimated
progress of each active operator, along with the actual and estimated
numbers of rows. All metrics are updating during query execution.

www.datasense.ir

https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio
https://www.sentryone.com/plan-explorer
https://docs.microsoft.com/en-us/sql/relational-databases/performance/live-query-statistics

7 Routy 8 Messages B3 Live Doy s

Eacimated query|uery 1: Query coat (relative to the batch): 100%
progress:25% |SELECT e, [BusinessEntitylD], p.[Title], p.(Firstame], p.(Middlebame], p.[Lastkame], p.[Suffix], e.[JobTitle], pp.[PhoneMumber], pot.[Rame] As [PhoneNumberTy

k| A
3 1 i
T Hash Maseh F— ‘q_ Lt Index Scan (MonClustared)
- Rigkt Oster Join) e AL [Emed 1Addrasa] . [T EnadRddrods Bna.
L D .05 00451 ’
01638 . 19972 of N
0ot 5 (1) 19572 of
305 0% 13972 11008)
_ . Operator has finished executing
Y ‘| L‘
il
Hash Match Comite feal Clugtazed Indax Scan (Clustared)
Right Outer Jsia) v Saar [PhonshusbarTyge] . [FE_PhoneliumbarTy
01248 1”1 0,003
0of o 3of
3 (10m))
505 (08 | E L]
] - 4
.} : /| W
P Hagh Match P Indax Sean (MonClustezsd)
0 I " [P ‘W;jl‘;:"lz thqhbro.ﬁ:: Toin) bm;.‘:l;;!-u [Fe taonPhone] [;}fﬁ::-«:llﬂilrlrw_ﬂhnlw
Vera luery rogress 0of 113 9972 f MR
BL () b 13970 (1008) La52 a2
PR 19972 (1008
- 1 i
Bagh Mareh Come ; 1 Inden Scan (enl
[zrer Jain! mz;:l i [CountryReqion] . [(RE_C
0086 o 0.0
. ‘ o 8 of .
Qperator is currently executing st o et
250 (04 b= L
2] -
Hagh Mazeh N q
o Conpute Scalar
"“E‘E_f”" 0,003
.olo: 181 o
B (101
1 |0y 1L (o0
2 ¥
< y
* Executing query.. 25% SOL016 (130 [62) | AdventureWorks2016CTP3 | D000 0 ros
1 Query.

Figure 5-14. Live Query Statistics (Source: Microsoft documentation)

Live Query Statistics is very useful when you need to debug long-running
queries. It allows you to pinpoint inefficiencies in the execution plans and
speed up further query tuning. You can enable Live Query Statistics for
queries you run in SSMS. You can also access it from the Active Expensive
Query section of the Activity Monitor window.

Live Query Statistics collects data based on query execution statistics
profiling. It uses two different methods. Standard profiling exists in all
versions of SQL Server and has historically been used to obtain the actual
execution plan for the queries. Unfortunately, this method introduces
significant overhead.

www.datasense.ir

https://docs.microsoft.com/en-us/sql/relational-databases/performance/live-query-statistics?view=sql-server-ver15

Starting with SQL Server 2014 SP2, there is another option called
lightweight profiling. With this method, the overhead is significantly
smaller; however, it does not collect runtime CPU information.

Table 5-2 illustrates how you can enable profiling in different versions of
SQL Server. It also shows xEvents that enable profiling globally in the
system. Live Query Statistics integrates with the latest version of profiling
supported by the SQL Server instance where it runs.

www.datasense.ir

N s 9 < o

(V2N

o~

N s o < o

(V2N

o~

Qs v o

VW =2 U O 8 w '~ O

www.datasense.ir

S
t
a
t
I
S
t
I
p
r
o
f
I
[
I
n
g
Type How to enable xEvent
Prior SQL Server Standard SET STATISTICS
2014 SP2 XML
SET STATISTICS post_query_execution_showpla
PROFILE n
SQL Server 2014 SP2 — SQL Lightweight v1 Live Query post_query_execution
Server 2016 RTM Statistics _showplan (less

www.datasense.ir

overhead)
query_thread profile

SQL Server 2016 SP1 — SQL Lightweight v2 T7412
Server 2017 QUERY_PLAN PROFI
LE query hint query plan_profile

SQL Server 2019 Lightweight v3 Enabled by default
LIGHTWEIGHT QUERY P
ROFILING database option ~ query post _executon_pl
an_profile

The overhead of standard profiling is significant. With lightweight
profiling, on the other hand, it is very low. According to Microsoft, starting
with SQL Server 2016 SP1, the overhead of continuously running
lightweight profiling is about 2 to 4%. Technically speaking, you can run an
xEvents session and collect profiling information for all queries in the
system if the server is not CPU bound. Nevertheless, be careful, and
measure the impact of this monitoring in your system.

There is another useful new function, sys.dm_exec query statistics xml,
that utilizes lightweight profiling. It provides an in-flight execution plan for
the currently running request. The result looks like the snapshot of Live
Query Statistics. You can use this function together with the

sys.dm_exec requests view, as shown in Listing 5-5.

Example 5-5. Using sys.dm _exec query statistics xml
SELECT

er.session_ id

,er.request id

,DB NAME (er.database id) as [database]

,er.start time

, CONVERT (DECIMAL (21, 3) ,er.total elapsed time / 1000.) AS

www.datasense.ir

[duration]
,er.cpu_time
, SUBSTRING (
gt.text,
(er.statement start offset / 2) + 1,
((CASE er.statement end offset
WHEN -1 THEN DATALENGTH (gt.text)
ELSE er.statement end offset
END - er.statement start offset) / 2y + 1
) AS [statement]
,er.status
,er.wait type
,er.wait time
,er.wait resource
,er.blocking session id
,er.last wait type
,er.reads
,er.logical reads
,er.writes
,er.granted gquery memory
,er.dop
s€r.row_count
,er.percent complete
,es.login time
,es.original login name
,€s.host name
,€s.program name
;C.client net address
,ib.event info AS [buffer]
,gt.text